[1] Adrian C. Helium-3 shortage could put on low-temperature research. Science, 2009, 326(5954): 778-779.[2] Kouzes R T, Ely J H, Erikson L E, et al. Neutron detection alternatives to 3He for national security applications. Nuclear Instruments Methods in Physical Research Section A, 2010, 623(3): 1035-1045.[3] Chaminade J P, Guillen F, Fouassier C, et al. Crystal growth and optical properties of new neutron detectors Ce3+:Li6R(BO3)3(R=Gd, Y). IEEE Transactions on Nuclear Science, 2001, 48(4): 1158-1161.[4] Chaminade J P, Viraphong O, Miyazawa S. One possible machanism of spiral/footing growth of Cz-grown Li6Gd(BO3)3. Journal of Crystal Growth, 2002, 237-239: 864-868.[5] Shekhovtsov A N, Tolmachev A V, Dubovik M F, et al. Structure and growth of pure and Ce3+-doped Li6Gd(BO3)3 single crystal. Journal of Crystal Growth, 2002, 242(1/2): 167-171.[6] Rivas-Silva J F, Flores-Riveros A, Berrondo M. DFT study of 1-D Li6Gd(BO3)3. International Journal of Quantum Chemistry, 2003, 94(2): 105-112.[7] Baumer V N, Dubovik M F, Grinyov B V, et al. Radiation-stimulated defects into LaB3O6 and Li6Gd(BO3)3:Ce single crystals. Radiation Measurements, 2004, 38(4/5/6): 359-362.[8] Nishimura H, Hosoya S, Takashima H, et al. Growth of Ce3+-doped Li6Gd(BO3)3 single crystals under ultralow oxygen partial pressure. Japanese Journal of Applied Physics, 2006, 45(2A): 909-911.[9] Berezovskaya I V, Dotsenko V P, Efryushina N P, et al. Luminescence of Ce3+ ions in alkaline earth borophosphates. Journal of Alloys and Compounds, 2005, 391(1/2): 170-176.[10] Voronova V, Shiran N, Gektin A, et al. Carriers trapping and radiative recombination in Ce, Eu and Pr-doped LiLuF4 crystals. Radiation Measurement, 2007, 42(4/5): 823-826.[11] Knitel M J, Dorenbos P, Van Eijk C W E, et al. Photoluminescence, and scintillation/thermoluminescence yields of several Ce3+ and Eu2+ activated borates. Nuclear Instruments and Methods in Physics Research A, 2000, 443(2): 364-374.[12] Van Eijk C W E, Bessiere A, Dorenbos P. Inorganic thermal-neutron scintillators. Nuclear Instruments and Methods in Physics Research A, 2004, 529(1/2/3): 260-267.[13] Czirr J B, MacGillivray G M, MacGillivray RR, et al. Performance and characteristics of a new scintillator. Nuclear Instruments and Methods in Physics Research A, 1999, 424(1): 15-19.[14] Shekhovtsov A N, Tolmachev A V, Dubovik M F, et al. Structure and growth of pure and Ce3+-doped Li6Gd(BO3)3 single crystals. Journal of Crystal Growth, 2002, 242(1/2): 167-171.[15] PAN Shang-Ke, YANG Fan, Ding Dong-Zhou, et al. Czochralski growth of Ce3+-doped Li6Gd(BO3)3 single crystal. IEEE Transations on Nuclear Science, 2010, 57(3): 1300-1303.[16] HENG Yue-Kun, JIA Ru, FU Zai-Wei, et al. Scintillation Properties of Neutron Detection Crystals Li6RE(BO3)3:Ce3+(RE=Lu, Y). IEEE Nuclear Science Symposium Conference Record, Valencia, 2011: 4627-4631.[17] Chaminade J P, Guillen F, Fouassier C, et al. Crystal growth and optical properties of new neutron detector Ce3+: Li6R(BO3)3(R=Gd, Y). IEEE Transations on Nuclear Science, 2001, 48(4): 1158-1161.[18] Ogorodnikov I N, Poryvai N E, Pustovarov V A, et al. Transient Hole-polaron optical absorption in Li6Gd(BO3)3 crystal. Physics of Solid State, 2009, 51(6): 1160-1166.[19] Ogorodnikov I N, Pustovarov V A, Tolmachev A V, et al. Electronic excitation dynamics and energy transfer in lithium-gadolinium borates doped by rare earths. Physics of Solid State, 2008, 50(9): 1684-1686.[20] YANG Fan, PAN Shang-Ke, DING Dong-Zhou, et al. Crystal growth and luminescent properties of the Ce-doped Li6Lu(BO3)3. Journal of Crystal Growth, 2010, 312(16/17): 2411-2414.[21] Grinyov B V, Dubovik M F, Tolmachev A V. Borate single crystals for polyfunctional applications: production and properties. Semiconductor Physics. Quantum Electronics & Optoelectronics, 2000, 3(3): 410-419. |