[1] Zhao G H, Cui X, Liu M C, et al. Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/ Sb-doped SnO2 electrode. Environmental Science and Technology, 2009, 43(5): 1480-1486.[2] Kong J T, Shi S Y, Zhu X P, et al. Effect of Sb dopant amount on the structure and electrocatalytic capability of Ti/Sb-SnO2 electrodes in the oxidation of 4-chlorophenol. Journal of Environmental Sciences, 2007, 19(11): 1380-1386. [3] Li P Q, Zhao G H, Cui X, et al. Constructing stake structured TiO2-NTs/Sb-doped SnO2 electrode simultaneously with high electrocatalytic and photocatalytic performance for complete mineralization of refractory aromatic acid. Journal of Physic and Chemistry C, 2009, 113(6): 2375-2383.[4] Berenguer R, Quijada C, Morallon E. Electrochemical characterization of SnO2 electrodes doped with Ru and Pt. Electrochimica Acta, 2009, 54(22): 5230-5238.[5] Makgae M E, Theron C C, Przybylowicz W J, et al. Preparation and surface characterization of Ti/SnO2-RuO2-IrO2 thin films as electrode material for the oxidation of phenol. Materials Chemistry and Physics, 2005, 92(2/3): 559-564.[6] Chen X M, Chen G H. Stable Ti/RuO2-Sb2O5-SnO2 electrodes for O2 evolution. Electrochimica Acta, 2005, 50(20): 4155-4159.[7] Rodgers J D, Jedral W, Bunce N J. Electrochemical oxidation of chlorinated phenols. Environmental Science and Technology, 1999, 33(9): 1453-1457. [8] Feng Y J, Li X Y, You H, et al. Application of ElectrochemicalTechnology in Environmental Engineering. Beijig: Chemical Industry Press, 2002.[9] Feng Y J, Li X Y, Li X, et al. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Res. 2005, 39(10): 1972-1981.[10] Chen X M, Gao F R, Chen G H. Comparison of Ti/BDD and Ti/SnO2-Sb2O5 electrodes for pollutant oxidation. Journal of Applied Electrochemistry, 2005, 35(2): 185-191.[11] Ding H Y, Feng Y J, Liu J F. Preparation and properties of Ti/SnO2-Sb2O5 electrodes by electrodeposition. Materials Letters, 2007, 61(27): 4920-4923.[12] Correa-Lozano B, Comninellis C, Battisti A D. Preparation of SnO2-Sb2O5 films by the spay pyrolysis technique. Journal of Applied Electrochemistry, 1996, 26(1): 83-89.[13] Huang A S, Zhao G H, Li H X. High quality Sb-doped SnO2 electrodes with high oxygen evolution potential prepared by in situ hydrothermal synthesis method. Chinese Chemical Letters, 2007, 18(8): 997-1000. [14] Liu Y, Li Z Y, Li J H. IrO2/SnO2 electrodes: prepared by Sol-Gel process and their electrocatalytic for pyrocatechol. Acta Materialia, 2004, 52(3): 721-727.[15] Ganz D, Gasparro G, Otto J, et al. Fast CO2 laser firing of Sol-Gel SnO2 Sb coatings. Journal of Materials Science Letters, 1997, 16(13): 1233-1235.[16] Xu H, Yan W, Tang C L. A novel method to prepare metal oxide electrode: spin-coating with thermal decomposition. Chinese Chemical Letters, 2011, 22(3): 354-357.[17] Cui X, Zhao G H, Lei Y Z, et al. Novel vertically aligned TiO2 nanotubes embedded with Sb-doped SnO2 electrode with high oxygen evolution potential and long service time. Materials Chemistry and Physics, 2009, 113(1): 314-321.[18] Chen X, Chen G H, Gao F R, et al. High-performance Ti/BDD electrodes for pollutant oxidation. Environmental Science and Technology, 2003, 37(21): 5021-5026.[19] Comninellis C, Pulgarin C. Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes. Journal of Applied Electrochemistry, 1993, 23(2): 108-112. |