掺氮多孔碳在二氧化碳吸附分离中的应用
|
陈爱兵, 于奕峰, 臧文伟, 齐国禄, 于运红, 李月彤
|
Nitrogen-doped Porous Carbon for CO2 Adsorption
|
Ai-Bing CHEN, Yi-Feng YU, Wen-Wei ZANG, Guo-Lu QI, Yun-Hong YU, Yue-Tong LI
|
|
表 1 不同掺氮碳材料对CO2的吸附能力比较 |
Table 1 Different nitrogen doped carbon materials for CO2 adsorption capacity |
|
Samples | Nitrogen source | Nitrogen content/wt% | Functionalities | Surface area /(m2·g-1) | CO2 capacity /(mmol·g-1) | N-doped microporous carbon [48] | Imine-linked polymer | 5.58-8.74 | Pyridinic, quaternary | 263-366 | 1.95 | N-doped mesoporous carbon[49] | Melamine resin | -8.00 | Pyridinic, pyrrolic, quaternary | -750 | 1.80 | KOH activated porous carbon[13] | Polypyrrole | -10.14 | Pyridinic,quaternary | 1700 | 3.10 | Organic amine grafting carbon[50] | Glucose | NA | Amide, tertiary amines, primary amines | <10 | 4.10 | Macro-micro hollow carbon spheres [51] | Melamine | 14.80 | NA | 767 | 2.67 | Sustainable biomass [38] | Glgae | 1.1-4.7 | Pyridinic, pyrrolic, quaternary | 1300-2400 | 7.40 | Template carbon [52] | HNO3 | 6.73 | Pyridinic, pyrrolic, quaternary | 1979 | 4.30 | N-doped activated carbon monoliths [11] | Polyacrylonitrile | 1.80 | NA | 2501 | 5.14 |
|
|
|