热喷涂生物陶瓷涂层的研究进展
郑学斌, 谢有桃
中国科学院 上海硅酸盐研究所, 特种无机涂层重点实验室, 上海200050

郑学斌(1971-), 男, 博士, 研究员. E-mail:xbzheng@mail.sic.ac.cn

郑学斌, 男, 博士, 中国科学院上海硅酸盐研究所研究员、博士生导师.主要从事生物涂层材料研究, 负责完成的#cod#x0201c;等离子喷涂羟基磷灰石生物材料制备中的关键技术研究#cod#x0201d;和#cod#x0201c;骨植入体生物活性涂层材料研究及应用#cod#x0201d;项目, 分别获2002和2009年度上海市科技进步二等奖.主持的真空等离子体喷涂钛(Ti)和羟基磷灰石(HA)涂层研发项目效果显著, 已进入批量生产阶段, 累计制备骨植入体产品十万余件, 临床应用效果优良. 在Biomaterials、JBMR、Acta Biomaterialia等国内外学术刊物发表论文120余篇, 申请国家发明专利30余项.

摘要

采用热喷涂技术在金属(合金)基材表面制备的生物陶瓷涂层, 兼具金属材料较高力学强度和陶瓷材料优良生物学性能, 作为骨植入材料的研究和应用备受关注。本文介绍骨植入涂层材料的研究概况, 重点阐述热喷涂羟基磷灰石(HA)涂层的研究现状, 并概述新型生物活性硅酸钙陶瓷涂层的研究进展。

关键词: 热喷涂; 等离子体喷涂; 羟基磷灰石涂层; 硅酸钙涂层; 综述
中图分类号:TB43   文献标志码:A    文章编号:1000-324X(2013)01-0012-09
Progress on Biomedical Ceramic Coatings Prepared by Thermal Spraying
ZHENG Xue-Bin, XIE You-Tao
Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Abstract

Biomedical ceramic coatings on metallic substrates depositedvia thermal spraying have attracted extensive attentions in the field of orthopedic implants due to their excellent mechanical strengths and biological properties. The studies on biomedical coatings for orthopedic implants are overviewed, and improvements of thermal sprayed hydroxyapatite coatings are summarized. Newly developed bioactive calcium silicate coatings are reviewed as well.

Keyword: thermal spray; plasma spray; HA coating; calcium silicate coating; review

生物医用材料研究与人的健康密切相关, 可促进经济发展和社会进步。骨植入材料是生物医用材料的重要组成部分, 大约占生物材料产品市场的五分之一。随着社会老龄化进程的加速, 以及交通、自然灾害等导致的骨伤事故增多, 对骨植入材料的需求日益增加。

钛及其合金、钴铬钼合金和不锈钢是临床上常用的金属骨植入材料。第二次世界大战前后, 人们即采用金属材料进行关节置换[ 1]。1963年英国Charnley医生采用金属和高分子材料相结合的方式开展全髋关节置换术。临床使用的金属材料不具生物活性, 与骨组织结合需要改善。对金属植入体进行表面改性, 是改善其生物学性能的可行途径[ 2]。热喷涂技术是常用的表面改性手段之一, 其制备的生物医用涂层主要有金属氧化物涂层(Al2O3、ZrO2、TiO2等)、生物玻璃涂层、多孔钛(Ti)涂层、生物活性羟基磷灰石(HA)涂层等。钛和羟基磷灰石涂层已广泛应用于临床实践。近年来, 硅酸钙类生物陶瓷涂层的研究亦受到人们的重视。

本文综述骨植入生物涂层材料的概况, 重点介绍了临床实践中获得应用的热喷涂HA涂层和新近发展的硅酸钙生物陶瓷涂层。

1 骨植入生物涂层材料概述

植入人体的生物材料, 与体内组织和体液直接接触, 其表面特征决定其生物功效。植入体进入生命系统, 蛋白质率先在其表面粘附; 细胞受蛋白质调控而增殖、整合形成组织(图1)[ 3]。骨植入材料的表面特性对于其与骨组织间的固定至关重要。研究表明, 植入体材料表面的微观结构和化学组成, 和其与骨组织细胞以及细胞外基质的联结相关[ 4]。对钛合金等金属骨植入体进行表面改性, 优化其表面结构和组成, 可改善材料表面的物理和化学性能以及生物功能。

图1 生物材料植入生命系统后发生的系列反应示意图[ 3]Fig. 1 Schematic illustration of the sequential reactions that taken place after the implantation of a biomaterial into a living system[ 3]

对骨植入体进行表面粗化, 可以增强其与骨组织间的物理固定。简单的方法是表面喷砂处理[ 5]。经喷砂处理后的钛植入体与骨组织的结合强度要明显高于纯机械加工的植入体[ 6]。为了改进生物固定效果, 植入体表面需要构建多孔结构[ 7]。利用球状钛颗粒或钛丝涂布在金属基体表面, 经真空烧结可获得三维连通的多孔结构。烧结生成的微孔直径为100~300 μm, 空隙率可达40%~55%。制备多孔钛涂层的常用方法还有热喷涂, 特别是等离子体喷涂。钛或其合金粉末经高温等离子体熔融后喷涂到金属基体表面, 即形成钛涂层。采用真空等离子体喷涂(VPS)方法制备的钛涂层已获临床应用[ 8]。但钛涂层不具生物活性, 在体内难以与骨组织直接产生化学键合, 早期固定效果较差。对钛涂层进行活化改性, 可赋予其生物活性。碱溶液浸泡处理的钛涂层具有生物活性[ 9], 与其表面生成的Ti-OH基团相关[ 10]。植入狗皮质骨1个月后, 改性钛涂层与骨接触率达60.5%, 明显比原始钛涂层高, 但3个月后两者比较接近, 均约为65%[ 11]

可用于骨植入体表面改性的生物材料种类较多, 主要有生物玻璃[ 12]、氧化锆[ 13]、氧化钛[ 14]、磷酸钙[ 15]等。由于与骨的无机成分接近, 磷酸钙类材料用于骨植入体表面改性的研究报道较多。采用磷酸钙喷砂处理, 不仅增加钛植入体粗糙度, 亦在其表面添加钙和磷元素, 促进了新生鼠颅骨成骨细胞前体细胞系MC3T3-E1在其表面的生长繁殖[ 16]。以磁控溅射法在Ti-6Al-4V基材表面沉积磷酸三钙(TCP)薄膜, 并进行退火处理, 进而研究其在PBS (Phosphate buffered saline)缓冲溶液中的降解行为, 发现退火处理可显著改善薄膜的稳定性。采用溶胶-凝胶(Sol-Gel)法在可降解Mg4Y合金表面制备磷酸钙涂层, 可改善其成骨细胞的相容性[ 17]

羟基磷灰石(hydroxgapatite, HA, 化学式Ca10(PO4)6(OH)2))具有与人体骨和牙齿主要矿物质成分类似的化学组成和晶体结构, 显示优良的生物相容性和生物活性, 是研究较多的磷酸钙类陶瓷材料[ 18]。采用涂层技术在医用金属基材上制备的HA涂层材料, 可兼具金属优良的力学性能和羟基磷灰石良好的生物活性。采用放电等离子体烧结法于钛基材沉积HA涂层[ 19], 模拟体液(simulated body fluid, SBF)试验证实其具有良好的生物活性。电化学方法在Ti-6Al-4V基材表面制备的HA涂层, 植入美国狼狗肱骨近端松质骨, 4 w后发现植入体表面有骨长入, 与骨组织间的结合明显改善[ 20]

2 热喷涂羟基磷灰石(HA)涂层研究

热喷涂是指利用某种热源(如电弧、高温等离子体、燃料火焰等)将粉末或丝状材料加热到熔融或半熔融状态, 以一定速度喷射到经预处理的基体表面, 沉积并形成涂层的一种技术。热喷涂技术包括火焰喷涂、电弧喷涂、等离子体喷涂、超音速火焰喷涂(HVOF)、爆炸喷涂, 以及近年发展的液相热喷涂等。1986年, 荷兰人Groot等[ 21]和美国人Kay[ 22]分别利用等离子喷涂技术成功制备了HA涂层。我国也于1988年制备了含HA涂层的牙种植体[ 23], 并试用于临床。采用热喷涂技术制备的HA涂层-医用金属复合植入体克服了块体HA的脆性, 发挥了金属材料强度高、韧性好的特点, 提高了植入体的承载和抗冲击能力; 同时, 又利用了HA良好的生物活性, 使其能与骨组织更好地结合。等离子体喷涂HA涂层是目前临床应用较多的骨替换材料, 特别是作为人工关节和牙种植体等受力部件。

2.1 HA涂层的组成与性能

热喷涂HA涂层的组成与粉末原料通常有较大差异。热喷涂(尤其是等离子体喷涂)过程中, HA粉末经高温焰流作用发生相变, 转变为非晶态或发生分解[ 24, 25]。非晶态的形成是喷涂过程中的熔化颗粒在基底上沉积时急冷所致[ 26]图2显示了HA与非晶相的界面[ 27]。HA粒子在等离子体射流中的表面温度可达2294~2707 K[ 28], 远高于HA的分解起始温度(1400℃); HA分解产生的氧化钙和亚稳相磷酸四钙(TTCP)含量分别可高达14.6%和49.5%。TTCP会继续分解为TCP和CaO。CaO的存在导致体液局部pH值增大, 从而影响材料的生物相容性。

为控制HA的分解, 人们分别从组分设计[ 29]、粉体筛选[ 24]、喷涂方式改进[ 30]、工艺参数优化[ 26]以及后处理[ 31]等方面进行研究。HA涂层后处理是提高结晶度的重要方式。真空退火处理可将HA涂层的结晶度从44%提高到68%, 但处理温度超过600℃会使涂层应变增大、裂纹增多、结合强度下降[ 32]。蒸汽-火焰处理的HA涂层结晶度高达98.7%[ 33]。但过高结晶度的HA涂层早期骨整合性能不佳[ 34]

图2 非晶相/HA界面的TEM晶格像照片[ 27]Fig. 2 TEM lattice image showing amorphous/HA phases Lattice spacing is about 0.27 nm[ 27]

与常规大气等离子体喷涂(APS)相比较, 真空等离子体喷涂(VPS)技术具有射流速度快、温度较低、喷涂室气氛可控等特点, 可制备合适结晶度(60%~80%)的HA涂层。VPS方法制备的HA涂层, 植入羊松质骨4 w后与骨组织接触率达68%, 明显优于对照Ti涂层组(46%)[ 8]。目前, 采用VPS技术制备的HA涂层已被广泛应用于临床实践。

人体骨组织中含有少量Na、Mg元素及痕量成分如K、Sr、Zn、F、Cl、Si等。研究发现, 在HA涂层中添加微量F、Mg等可明显改善其生物活性及生物相容性, 加速与人体骨组织的整合[ 35, 36, 37, 38]。在HA涂层中添加Sr不但可提高涂层的机械性能, 亦能较好促进骨细胞的增殖与分化[ 39, 40, 41]。Si掺杂对于增加骨密度、促进DNA合成、加速骨细胞增殖, 以及提高碱性磷酸酶、I型胶原和骨钙素的表达, 效果亦较明显[ 42, 43, 44, 45, 46, 47, 48]

HA与医用金属(特别是钛)间由于热膨胀系数失配, 两者的结合强度较低, 影响体内长期使用效果。制备复合或梯度涂层, 可有效改善涂层与基体之间的结合。HA与Ti(或Ti-6Al-4V)复合或梯度涂层[ 49, 50], 拉伸强度最高可达40 MPa[ 51]。HA涂层中复合金属组分, 特别是与基材相同组分的金属, 可提高其结合强度, 这主要是由于掺杂物的加入缓和了涂层与基材之间的热膨胀系数失配, 减小了残余热应力。另外, 掺杂物本身力学强度较高也是复合涂层结合强度提高的重要原因。HA涂层中添加ZrO2[ 52, 53, 54]、TiO2[ 55, 56]以及SiO2[ 57]等复合组分, 均可不同程度地得到强化, 有时还能对其生物学性能产生积极影响。

热喷涂HA涂层中添加抗菌组分可抑制骨植入过程或术后的感染.“生物材料诱导感染”(biomaterial-centered infection)是植入体手术感染的主要模式之一[ 58]。为防止术后感染, 骨植入材料表面加载抗菌剂的研究受到重视[ 59, 60]。庆大霉 素[ 61, 62]、洗必泰[ 63]等抗生素均可用于植入体(包括HA涂层)的抗感染。但植入体表面形成的生物膜会增加细菌对抗生素的抗药性, 导致药效降低。Ag、Cu等广谱抗菌金属元素可用于植入体表面的抗菌改性[ 64, 65]。VPS方法制备的含银HA涂层, 对大肠杆菌、绿脓杆菌和金黄色葡萄球菌均具有显著的抗菌效果[ 66]。上述材料的动物实验显示, 含银HA涂层可有效防止伤口感染的发生[ 67]。有菌(金黄色葡萄球菌)条件下抗菌涂层(HA+3wt%Ag(HA3))和常规HA涂层螺钉植入狗胫骨, 3 w后常规HA涂层螺钉组周围出现骨膜反应(见图3), 而抗菌涂层组周围无炎症出现; 6 w时HA组与骨之间出现明显的钉痕, 发生松动, 而抗菌涂层组与骨之间结合良好[ 68]

图3 抗菌HA3涂层和常规HA涂层螺钉植入狗胫骨后的X射线照片[ 68]Fig. 3 X-ray views of antibacterial and convenient HA coated screws after implanted in dog’s tibia[ 68](a)1 w, (b)3 w(黑色箭头所指为骨膜炎部位), (c)6 w(白色箭头所指为钉痕)

2.2 纳米结构HA涂层

除骨植入材料表面组成影响生物学性能和临床效果外, 表面结构亦会影响其性能。近年来, 植入材料改性获得表面纳米化微观结构骨植入材料的研究报导较多。人的骨骼和牙齿是天然有机高分子和HA纳米晶粒所组成的复合材料。将纳米技术和生物材料相结合, 可发挥材料表面的纳米特性, 使其与体内蛋白、细胞以及组织更加相容, 诱导积极的生物学反应。

在微米粒径的HA粉体中添加纳米TiO2[ 26]、Al2O3[ 69]、碳纳米管(CNT)[ 70]等, 可赋予HA涂层纳米特征。采用喷雾干燥的纳米颗粒的HA粉体, 以HVOF喷涂可获得表面纳米结构的HA涂层[ 71]。液相热喷涂技术可进行纳米粉体的直接送粉、实现涂层沉积[ 72]。将纳米HA粉体分别分散于水和二甘醇中制得悬浮液, 以高速悬浮液火焰喷涂(high-velocity suspension flame spraying, HVSFS)方法可制备纳米HA涂层[ 73]。采用液相前驱体等离子体喷涂(liquid precursor plasma spraying, LPPS)方法亦可制备平均晶粒粒径为50 nm左右的HA涂层[ 74], 并可通过调节前驱体溶液浓度等参数调控涂层结构, 获得致密或多孔结构涂层[ 75]

生物陶瓷涂层的生物活性[ 76, 77]和细胞相容 性[ 78, 79], 受其表面纳米结构影响。以感应等离子体喷涂制备HA纳米涂层, 人成骨细胞(hOB)培养表明, 涂层对细胞的粘附、扩展以及细胞外基质的形成均有促进作用, 植入鼠股骨2 w后表面即形成骨样组织, 显示良好的骨整合能力(图4)[ 31]

图4 加涂纳米HA涂层的钛植入鼠股骨2 w后的光学显微照片[ 30]Fig. 4 Optical photomicrograph of a longitudinal section of nano-HA coated Ti implanted in rat femur at 2 w showing nonmineralized osteoid (O), and collagen matrix (C)[ 30]

3 新型硅酸钙类生物陶瓷涂层

HA涂层是典型的生物活性材料, 可促进新骨生长, 具有较好的骨整合效果。但是, HA与钛等医用金属基材间热膨胀系数相差较大, 热喷涂HA涂层结合强度较低(一般为10~20 MPa), 生理环境下易从钛基体表面剥离, 影响其使用效果[ 51]。鉴于此,良好生物活性和优良力学性能(特别是结合强度)的新型生物涂层值得研究。硅酸钙类陶瓷涂层是近年受到关注的生物涂层材料。

硅酸钙类陶瓷涂层的化学组分与生物玻璃类似, 在模拟体液中诱导类骨磷灰石形成能力较强, 生物活性良好[ 80, 81, 82, 83, 84]。大气等离子体喷涂硅灰石涂层, 与Ti-6Al-4V基体的结合强度高达42.8 MPa, 明显高于HA涂层[ 85, 86]。硅酸二钙(Ca2SiO4)和透辉石(CaMgSi2O6)涂层的结合强度分别达38.9 MPa和32.5 MPa[ 80, 87, 88]。此类涂层与钛(或钛合金)间热膨胀系数匹配性较好, 可减少涂层制备过程中产生的热应力, 这也许是其结合强度较高的主要原因[ 89]。等离子体喷涂硅灰石涂层植入狗股骨和骨髓腔, 新骨能在其表面正常生长成熟, 优良的骨传导性得到初步验证(见图5)[ 90]。但硅灰石涂层存在生理环境中降解过快的问题[ 83]

图5 硅灰石涂层在植入股骨(a)与骨髓(b)三个月后的组织学形貌[ 90]Fig. 5 Histological morphologies of the cross-section of the wollastonite coating after implantation in cortical bone (a) and marrow (b) for 3 months[ 90]WC: wollastonite coating, NB: newly formed bone

为控制硅酸钙类涂层的降解速度, 可采用添加稳定组分的方式制备复合涂层。等离子体喷涂技术沉积硅酸二钙-钛复合涂层可控降解, 但过量钛的添加会降低涂层诱导类骨磷灰石形成能力[ 91, 92]。制备硅酸二钙-氧化锆复合涂层, 也可抑制涂层在生理环境中的降解[ 93, 94]。采用机械混合粉体制备的复合涂层存在组分分布不均匀的问题, 局部硅酸钙组分的过度溶解, 会导致涂层的坍塌。采用一种具“核-壳”结构的硅酸钙复合粉末制备的涂层, 不仅使两种组分均匀分布, 而且明显改善其在生理环境中的稳定性, 在Tris-HCl缓冲溶液中的质量损失降低了约十倍[ 95, 96, 97, 98]。人骨髓基质干细胞(hBMSCs)培养试验证实, 细胞在复合涂层表面的粘附与增殖行为优于临床应用的HA涂层; ALP(碱性磷酸酶)、COL I(I型胶原)、BSP(骨涎蛋白)、OPN(骨桥蛋白)和OC(骨钙素)等成骨标志基因分析发现, 复合涂层表面细胞的大部分成骨基因表达量均优于HA涂层(图6)[ 99]。通过锌(Zn)掺杂改性, 可在改善硅酸钙涂层化学稳定性的同时, 使涂层对大肠杆菌和金黄色葡萄球菌产生显著的抑菌效果[ 100]

图6 人骨髓基质干细胞(hBMSCs)在CaO-ZrO2-SiO2和HA涂层表面的成骨标志基因表达: (A)4 d, (B)7 d[ 99]Fig. 6 Expression levels of osteoblastic differentiation related genes of hBMSCs cultured on CaO-ZrO2-SiO2 and HA coatings for (A) 4 d and (B) 7 d[ 99]

4 结语与展望

骨植入体的表面组成和结构对其与骨组织间的整合产生重要作用。通过表面技术制备生物涂层可实现植入体表面组成和结构的优化, 改善材料的化学和物理性能, 从而影响其生物功能。采用热喷涂技术制备的生物陶瓷涂层材料, 兼具金属材料的力学强度和生物陶瓷的生物学性能, 其研究和应用已取得显著进展。

对生物活性HA涂层进行组成和结构优化, 有望克服其力学强度低、体内降解较快等问题, 使这一传统的生物陶瓷材料获得性能改进。HA涂层在热喷涂制备时存在分解和非晶化现象, 影响其生物学性能。通过工艺优化、后处理等方法可一定程度控制其组成变化, 其中真空等离子体喷涂的效果较为显著。在HA涂层中添加复合组分, 不仅可提高力学性能, 还可赋予其特殊的生物功能(如抗菌性能等)。对HA涂层进行结构优化, 特别是制备纳米结构涂层, 可进一步改善其生物学性能。

新型硅酸钙类生物陶瓷涂层, 集生物活性、形态固定、抗感染等复合生物功能于一体, 且具有较高的力学强度(尤其是与基体的结合强度), 有望用作新一代骨植入体, 改善早期愈合性能和长期植入效果。改善硅酸钙类涂层在生理环境中的化学稳定性, 控制其降解速率, 以获得优良的综合性能是相关研究的重点。对硅酸钙类涂层的体内效果进行模拟考察, 为其在骨植入体上的实际应用提供科学依据, 亦是目前需着重开展的工作。

参考文献
[1] 吕厚山. 人工关节外科学. 北京: 科学出版社, 1998. [本文引用:1]
[2] Kasemo B, Lausmaa J. Surface properties and processes of the biomaterial-tissue interface. Materials Science and Engineering C-Biommetic Materials Sensors and and Systems, 1994, 1(3): 115-119. [本文引用:1]
[3] Paital S R, Dahotre N B. Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies. Materials Science and Engineering R-Reports, 2009, 66(1/2/3): 1-70. [本文引用:1] [JCR: 13.902]
[4] Gittens R A, McLachlan T, Olivares-Navarrete R, et al. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials, 2011, 32(13): 3395-3403. [本文引用:1] [JCR: 7.604]
[5] Hatano K, Inoue H, Kojo T, et al. Effect of surface roughness on proliferation and alkaline phosphatase expression of rat calvarial cells cultured on polystyrene. Bone, 1999, 25(4): 439-445. [本文引用:1] [JCR: 3.823]
[6] Buser D, Schenk R K, Steinemann S, et al. Influence of surface characteristics on bone integration of titanium implants: a hostomorphometric study in miniature pigs. Journal of Biomedical Materials Research, 1991, 25(7): 889-902. [本文引用:1] [JCR: 2.308]
[7] Keller J C, Young F A, Hansel B, et al. Systemic effects of porous Ti dental implants. Dental Materials, 1985, 1(2): 41-42. [本文引用:1] [JCR: 3.773]
[8] Aebil N, Krebs J, Stich H, et al. In vivo comparison of the osseointegration of vacuum plasma sprayed titanium- and hydroxyapatite-coated implants. Journal of Biomedical Materials Research, 2003, 66A(2): 356-363. [本文引用:2] [JCR: 2.308]
[9] SHI Jian-Min, DING Chuan-Xian, WU Yi-Hua. Bioactivity of titanium coating. Journal of Inorganic Materials, 2001, 16(3): 515-521. [本文引用:1] [JCR: 0.531] [CJCR: 1.106]
[10] Chen Y K, Zheng X B, Ji H, et al. Effect of Ti-OH formation on bioactivity of vacuum plasma sprayed titanium coating after chemical treatment. Surface & Coating Technology, 2007, 202(3): 494-498. [本文引用:1]
[11] Xue W C, Liu X Y, Zheng X B, et al. In vivo evaluation of plasma sprayed titanium coating after alkali modification. Biomaterials, 2005, 26(16): 3029-3037. [本文引用:1] [JCR: 7.604]
[12] Schrooten J, Hesen J A. Adhesion of bioactive glass coating to Ti6Al4V oral implant. Biomaterials, 2000, 21(14): 1461-1469. [本文引用:1] [JCR: 7.604]
[13] Wang G C, Liu X Y, Gao J H, et al. In vitro bioactivity and phase stability of plasma-sprayed nanostructured 3Y-TZP coatings. Acta Biomaterialia, 2009, 5(6): 2270-2278. [本文引用:1] [JCR: 5.093]
[14] Han Y, Chen D, Sun J, et al. UV-enhanced bioactivity and cell response of micro-arc oxidized titania coatings. Acta Biomaterialia, 2008, 4(5): 1518-1529. [本文引用:1] [JCR: 5.093]
[15] Feddes B, Vredenberg A M, Wolke J G C, et al. Bulk composition of r. f. magnetron sputter deposited calcium phosphate coatings on different substrates (polyethylene, polytetrafluoroethylene, silicon). Surface & Coatings Technology, 2004, 185(2/3): 346-355. [本文引用:1]
[16] Guehennec L, Lopez-Heredia M A, Enkel B, et al. Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomaterialia, 2008, 4(3): 535-543. [本文引用:1] [JCR: 5.093]
[17] Roy A, Singh S S, Datta M K, et al. Novel Sol-Gel derived calcium phosphate coatings on Mg4Y alloy. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2011, 176(20): 1679-1689. [本文引用:1]
[18] Froimson M I, Garino J, Machenaud A, et al. Minimum 10-year results of a tapered, titanium, hydroxyapatite-coated hip stem: an independent review. The Journal of Arthroplasty, 2007, 22(1): 1-7. [本文引用:1]
[19] Yu L G, Khor K A, Li H, et al. Effect of spark plasma sintering on the microstructure and in vitro behavior of plasma sprayed HA coatings. Biomaterials, 2003, 24(16): 2695-2705. [本文引用:1] [JCR: 7.604]
[20] Daugaard H, Elmengaard B, Bechtold J E, et al. The effect on bone growth enhancement of implant coatings with hydroxyapatite and collagen deposited electrochemically and by plasma spray. Journal of Biomedical Materials Research, 2010, 92A(3): 913-921. [本文引用:1] [JCR: 2.308]
[21] Groot K, Geesink R G T, Klein C P A T, et al. Plasma sprayed coating of hydroxyapatite. Journal of Biomedical Materials Research, 1987, 21(12): 1375-1387. [本文引用:1] [JCR: 2.308]
[22] Lacefield W R. Hydroxyapatite coatings, In: An Introduction to Bioceramics, ed. Hench L L and Wilson J. Singapore: World Scientific, 1994. [本文引用:1]
[23] 梁 星, 魏治统, 陈安玉. 生物活性陶瓷-钛复合人工牙的涂层初探. 华西口腔医学杂志, 1989, 7(4): 193-196. [本文引用:1]
[24] Cheang P, Khor K A. Addressing processing problems associated with plasma spraying hydroxyapatite coatings. Biomaterials, 1996, 17(5): 537-544. [本文引用:2] [JCR: 7.604]
[25] Feng C F, Khor K A, Liu E J, et al. Phase transformations in plasma sprayed hydroxyapatitecoatings. Scripta Materialia, 1999, 42(1): 103-109. [本文引用:1] [JCR: 2.821]
[26] ZHENG Xue-Bin, HUANG Min-Hui, HUANG Jing-Qi, et al. Effect of spray distance and spray power on properties of plasma sprayed hydroxyapatite coatings. Journal of Inorganic Materials, 1999, 14(5): 783-788. [本文引用:3] [JCR: 0.531] [CJCR: 1.106]
[27] Dong Z L, Khor K A, Quek C H, et al. TEM and STEM analysis on heat-treated and in vitro plasma-sprayed hydroxyapatite/ Ti-6Al-4V composite coatings. Biomaterials, 2003, 24(1): 97-105. [本文引用:1] [JCR: 7.604]
[28] Cizek J, Khor K A. Role of in-flight temperature and velocity of powder particles on plasma sprayed hydroxyapatite coating characteristics. Surface & Coatings Technology, 2012, 206(8/9): 2181-2191. [本文引用:1]
[29] Bhadang K A, Gross K A. Influence of fluorapatite on the properties of thermally sprayed hydroxyapatite coatings. Biomaterials, 2004, 25(20): 4935-4945. [本文引用:1] [JCR: 7.604]
[30] Roy M, Band yopadhyay A, Bose S, et al. Induction plasma sprayed nano hydroxyapatite coatings on titanium for orthopaedic and dental implants. Surface & Coatings Technology, 2011, 205(8/9): 2785-2792. [本文引用:1]
[31] Brossa F, Cigada A, Chiesa R, et al. Post-deposition treatment effects on hydroxyapatite vacuum plasma spray coatings. Journal of Materials Science - Materials in Medicine, 1994, 5(12): 855-857. [本文引用:2] [JCR: 2.141]
[32] Yang Y C. Influence of residual stress on bonding strength of the plasma-sprayed hydroxyapatite coating after the vacuum heat treatment. Surface & Coatings Technology, 2007, 201(16/17): 7187-7193. [本文引用:1]
[33] Tao S Y, Ji H, Ding C X. Effect of vapor-flame treatment on plasma sprayed hydroxyapatite coatings. Journal of Biomedical Materials Research, 2000, 52(3): 572-575. [本文引用:1] [JCR: 2.308]
[34] Xue W C, Liu X Y, Zheng X B, et al. Effect of hydroxyapatite coating crystallinity on dissolution and osseointegration in vivo. Journal of Biomedical Materials Research Part A, 2005, 74A(4): 553-561. [本文引用:1]
[35] Gross K A, Rodriguez-Lorenzo L M. Sintered hydroxyfluorapatites. Part I: Sintering ability of precipitated solid solution powders. Biomaterials, 2004, 25: 1375-1384. [本文引用:1] [JCR: 7.604]
[36] Robinson C, Shore R C, Brookes S J, et al. The chemistry of enamel caries. Crit. Rev. Oral. Biol. Med. , 2000, 11(4): 481-495. [本文引用:1]
[37] Land i E, Tampieri A, Mattioli-Belmonte, et al. Biomimetic Mg- and Mg, CO32- substituted hydroxyapatites: synthesis characterization and in vitro behavior. J. Eur. Ceram. Soc. , 2006, 26(13): 2593-2601. [本文引用:1] [JCR: 2.36]
[38] Jantova S, Theiszova M, Letasiova S. In vitro effects of fluor-hydroxyapatite, fluorapatite and hydroxyapatite on colony formation, DNA damage and mutagenicity. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2008, 652(2): 139-144. [本文引用:1] [JCR: 2.22]
[39] Land i E, Tampieri A, Celotti G, et al. Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomater. , 2007, 3(6): 961-969. [本文引用:1] [JCR: 5.093]
[40] Oliveira A L, Reis R L, Li P. Strontium-substituted apatite coating grown on Ti6Al4V substrate through biomimetic synthesis. J. Biomed. Mater. Res. B, 2007, 83(1): 258-265. [本文引用:1] [JCR: 2.147]
[41] Xue W, Hosick H L, Band yopadhyay A, et al. Preparation and cell-materials interactions of plasma sprayed strontium-containing hydroxyapatite coating. Surf. Coat. Technol. , 2007, 201(8): 4685-4693. [本文引用:1] [JCR: 1.941]
[42] Schwarz K, Milne D. Growth-promoting effects of silicon in rats. Nature, 1972, 239: 333-334. [本文引用:1] [JCR: 38.597]
[43] Carlisle E. Silicon: a possible factor in bone calcification. Science, 1970, 167(3916): 279-280. [本文引用:1]
[44] Pietak A M, Reid J W, Stott M J, et al. Silicon substitution in the calcium phosphate bioceramics. Biomaterials, 2007, 28: 4023-4032. [本文引用:1] [JCR: 7.604]
[45] Jugdaohsingh R, Tucker K, Qiao N, et al. Dietary silicon intake is positevely associated with bone mineral density in men and premenopausal women of the Framingham offspring cohort. J. Bone. Miner. Res. , 2004, 19(2): 297-307. [本文引用:1] [JCR: 6.128]
[46] Darley W M, Volcani B E. Role of silicon in diatom metabolism. A silicon requirement for deoxyreibonucleic acid synthesis in diatom Cylindrotheca-fusiformis reimann and lewin. Exp. Cell. Res. , 1969, 58(2/3): 334. [本文引用:1] [JCR: 3.557]
[47] Keeting P, Oursler M, Wiegand K, et al. Zeolite a increases proliferation, differentiation, and transforming growth factor beta production in normal adult human osteoblastlike cells in vitro. J. Bone. Miner. Res. , 1992, 7(11): 1281-1289. [本文引用:1] [JCR: 6.128]
[48] Reffitt D, Ogston N, Jugdaohsingh R, et al. Orthosilicic acid stimulates collagen type I synthesis and osteoblastic differentiation in human osteoblastic-like cells in vitro. Bone, 2003, 32(2): 127-135. [本文引用:1] [JCR: 3.823]
[49] Zheng X B, Huang M H, Ding C X. Bonding strength of plasma sprayed hydroxyapatite / Ti composite coatings. Biomaterials, 2000, 21(8): 841-849. [本文引用:1] [JCR: 7.604]
[50] Gu Y W, Khor K A, Cheang P. In vitro studies of plasma-sprayed hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid (SBF). Biomaterials, 2003, 24(9): 1603-1611. [本文引用:1] [JCR: 7.604]
[51] Khor K A, Gu Y W, Quek C H, et al. Plasma spraying of functionally graded hydroxyapatitey/Ti-6Al-4V coatings. Surface & Coatings Technology, 2003, 168(2/3): 195-201. [本文引用:2]
[52] Lim V J P, Khor K A, Fu L, et al. Hydroxyapatite-zirconia composite coatings via the plasma spraying process. Journal of Materials Processing Technology, 1999, 89-90
(SI): 491-496. [本文引用:1] [JCR: 1.953]
[53] Li H, Khor K A, Kumar R, et al. Characterization of hydroxyapatite nano-zirconia composite coatings deposited by high velocity oxy-fuel (HVOF) spray process. Surface & Coatings Technology, 2004, 182(2/3): 227-236. [本文引用:1]
[54] Zheng X B, Ding C X. Characterization of plasma sprayed hydroxyapatite / zirconium oxide composite coatings. Journal of the Korean Vacuum Society, 2000, 9(SI): 89-94. [本文引用:1]
[55] Zheng X B, Ding C X. Characterization of plasma sprayed hydroxyapatite/TiO2 composite coatings. Journal of Thermal Spray Technology, 2000, 9(4): 520-525. [本文引用:1] [JCR: 1.481]
[56] Tomaszek R, Pawlowski L, Gengembre L, et al. Microstructure of suspension plasma sprayed multilayer coatings of hydroxyapatite and titanium oxide. Surface & Coatings Technology, 2007, 201(16/17): 7432-7440. [本文引用:1]
[57] Morks M F, Fahim N F, Kobayashi A. Structure, mechanical performance and electrochemical characterization of plasma sprayed SiO2/Ti-reinforced hydroxyapatite biomedical coatings. Applied Surface Science, 2008, 255(5): 3426-3433. [本文引用:1] [JCR: 2.112]
[58] Gristina A G. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science, 1987, 237(4822): 1588-1595. [本文引用:1]
[59] Gruessner U, Clemens M, Pahlplatz P V, et al. Improvement of peripheral wound healing by local administration of gentamicin- impregnated collagen fleeces after abdominoperineal excision of rectal cancer. American Journal of Surgery, 2001, 182: 502-509. [本文引用:1] [JCR: 2.516]
[60] Oyane A, Yokoyama Y, Uchida M, et al. The formation of an antibacterial agent-apatite composite coating on a polymer surface using a metastable calcium phosphate solution. Biomaterials, 2006, 27(17): 3295-3303. [本文引用:1] [JCR: 7.604]
[61] Sorensen T S, Sorensen A L. Rapid release of gentamycin from collagen sponge: in vitro comparison with plastic beads. Acta Orthopaedice Scand inavica, 1990, 61(4): 353-356. [本文引用:1]
[62] Frédéric L, Aurélien B, Jérémy G, et al. A new concept of gentamicin loaded HAP/TCP bone substitute for prophylactic action: in vitro release validation. Journal of Materials Science - Materials in Medicine, 2008, 19(2): 947-951. [本文引用:1] [JCR: 2.141]
[63] Cambell A A, Song L, Li X S, et al. Development, characterization, and anti-microbial efficacy of hydroxyapatite-chlorhexidine coatings produced by surface-induced mineralization. Journal of Biomedical Materials Research, 2000, 53(4): 400-407. [本文引用:1] [JCR: 2.308]
[64] Feng Q L, Kim T N, Wu J, et al. Antibacterial effects of Ag-HAp thin films on alumina substrates. Thin Sold Films, 1998, 335(1/2): 214-219. [本文引用:1]
[65] Wan Y Z, Xiong G Y, Liang H, et al. Modification of medical metals by ion implantation of copper. Applied Surface Science, 2007, 253(24): 9426-9429. [本文引用:1] [JCR: 2.112]
[66] Chen Yikai, Zheng Xuebin, Xie Youtao, et al. Anti-bacterial and cytotoxic properties of plasma sprayed silver-containing HA coatings. Journal of Materials Science - Materials in Medicine, 2008, 19(12): 3603-3609. [本文引用:1] [JCR: 2.141]
[67] 阮洪江, 刘俊建, 范存义, . 载银羟基磷灰石抗菌涂层体外抗菌性能及生物相容性研究. 中国修复重建外科杂志, 2009, 23(2): 226-230. [本文引用:1]
[68] 陈益凯. 抗菌型钛和羟基磷灰石涂层制备和性能研究. 上海: 中国科学院上海硅酸盐研究所博士论文, 2009: 91-92. [本文引用:1]
[69] Tercero J E, Namin S, Lahiri D, et al. Effect of carbon nanotube and aluminum oxide addition on plasma-sprayed hydroxyapatite coating's mechanical properties and biocompatibility. Materials Science and Engineering C, 2009, 29(7): 2195-2202. [本文引用:1]
[70] Balani K, Anderson R, Laha T, et al. Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro. Biomaterials, 2007, 28(4): 618-624. [本文引用:1] [JCR: 7.604]
[71] Li H, Khor K A, Cheang P. Adhesive and bending failure of thermal sprayed hydroxyapatite coatings: Effect of nanostructures at interface and crack propagation phenomenon during bending. Engineering Fracture Mechanics, 2007, 74(12): 1894-1903. [本文引用:1] [JCR: 1.413]
[72] 杨 晖, 陈礼洲. 液相等离子喷涂制备纳米涂层的研究进展. 材料导报, 2008, 22(9): 58-60. [本文引用:1]
[73] Gadow R, Killinger A, Stiegler N. Hydroxyapatite coatings for biomedical applications deposited by different thermal spray techniques. Surface & Coatings Technology, 2010, 205(4): 1157-1164. [本文引用:1]
[74] Huang Y, Song L, Huang T. Characterization and formation mechanism of nano-structured hydroxyapatite coatings deposited by the liquid precursor plasma spraying process. Biomedical Materials, 2010, 5(5): 054113-1-10. [本文引用:1] [JCR: 2.158]
[75] Huang Y, Song L, Liu X Y, et al. Hydroxyapatite coatings deposited by liquid precursor plasma spraying: controlled dense and porous microstructures and osteoblastic cells responses. Biofabrication, 2010, 2(4): 045003-1-3. [本文引用:1] [JCR: 3.705]
[76] Liu X Y, Zhao X, Ding C X, et al. Light-induced bioactive TiO2 surface. Applied Physics Letters, 2006, 88(1): 013905. [本文引用:1] [JCR: 3.794]
[77] Zhao X B, Liu X Y, Chen Z G, et al. Study on bioactivity of plasma-sprayed titania coating. Journal of Inorganic Materials, 2008, 23(5): 1021-1026. [本文引用:1] [JCR: 0.531] [CJCR: 1.106]
[78] Hu X X, Shen H, Cheng Y, et al. One-step modification of nano-hydroxyapatite coating on titanium surface by hydrothermal method. Surf Coat Technol, 2010, 205(7): 2000-2006. [本文引用:1] [JCR: 1.941]
[79] Wang G, Liu X, Zreiqat H, et al. Enhanced effects of nano-scale topography on the bioactivity and osteoblast behaviors of micron rough ZrO2 coatings. Colloids and Surfaces B: Biointerfaces, 2011, 86(2): 267-274. [本文引用:1] [JCR: 3.554]
[80] Liu X Y, Tao S Y, Ding C X. Bioactivity of plasma sprayed dicalcium silicate coating. Biomaterials, 2002, 23(3): 963-968. [本文引用:2] [JCR: 7.604]
[81] Liu X Y, Ding C X. Reactivity of plasma sprayed wollastonite in simulated body fluid. J. Biomed. Mater. Res. , 2002, 59(2): 259-264. [本文引用:1] [JCR: 2.308]
[82] Liu X Y, Ding C X. Apatite formed on the surface of plasma sprayed wollastonite coating immersed in simulated body fluid. Biomaterials, 2001, 22(14): 2007-2012. [本文引用:1] [JCR: 7.604]
[83] Xue W C, Liu X Y, Zheng X B, et al. Dissolution and mineralization of plasma-sprayed wollastonite coatings with different crystallinity. Surf. Coat. Technol, 2004, 200(7): 2420-2427. [本文引用:2] [JCR: 1.941]
[84] Xue W C, Ding C X, Cao C, et al. Bioactivity of plasma-sprayed diopside coating in vitro. Key Eng. Mater. ,2005, 288-289: 319-322. [本文引用:1] [JCR: 0.224]
[85] Liu X Y, Ding C X. Phase compositions and microstructure of plasma sprayed wollastonite coating. Surf. Coat. Technol. , 2001, 141(2/3): 269-274. [本文引用:1] [JCR: 1.941]
[86] Liu X Y, Ding C X. Characterization of plasma sprayed wollastonite powder and coating. Surf. Coat. Technol. , 2002, 153(2/3): 173-177. [本文引用:1] [JCR: 1.941]
[87] 刘宣勇. 等离子喷涂生物活性硅灰石涂层研究. 上海: 中国科学院上海硅酸盐研究所博士论文, 2002: 96-98. [本文引用:1]
[88] Xue W C, Liu X Y, Zheng X B, et al. Plasma-sprayed diopside coatings for biomedical applications. Surf. Coat. Technol. , 2004, 185(2/3): 340-345. [本文引用:1] [JCR: 1.941]
[89] Liu X Y, Ding C X. Thermal properties and microstructure of a plasma sprayed wollastonite coating. J. Therm. Spray. Technol. , 2002, 11(3): 375-379. [本文引用:1]
[90] Xue W C, Liu X Y, Zheng X B, et al. In vivo evaluation of plasma-sprayed wollastonite coating. Biomaterials, 2005, 26(17): 3455-3460. [本文引用:1] [JCR: 7.604]
[91] Xie Y T, Liu X Y, Zheng X B, et al. Bioconductivity of plasma sprayed dicalcium silicate/titanium composite coatings on Ti-6Al-4V alloy. Surf. Coat. Technol. , 2005, 199(1): 105-111. [本文引用:1] [JCR: 1.941]
[92] Xie Y T, Liu X Y, Chu P K, et al. Bioactive titanium-particle- containing dicalcium silicate coatings. Surface & Coatings Technology, 2005, 200(5/6): 1950-1953. [本文引用:1]
[93] Xie Y T, Liu X Y, Ding C X, et al. Bioconductivity and mechanical properties of plasma-sprayed dicalcium silicate/zirconia composite coatings. Mater. Sci. Eng. , C, 2005, 25(4): 509-515. [本文引用:1] [JCR: 2.404]
[94] Xie Y T, Chu P K, Liu X Y, et al. Improved stability of dicalcium silicate/zirconia composite coatings by post-spraying heat treatment. Solid State Phenomena, 2005, 107: 141-144. [本文引用:1] [JCR: 0.493]
[95] Liang Y, Xie Y T, Ji H, et al. Chemical Stability and biological properties of plasma-sprayed CaO-SiO2-ZrO2 Coatings. J. Therm. Spray Technol. , 2010, 19(6): 1171-1178. [本文引用:1]
[96] Xie Y T, Zheng X B, Ding C X, et al. Preparation and characterization of CaO-ZrO2-SiO2 coating for potential application in biomedicine. J. Therm. Spray Technol. , 2009, 18(4): 678-685. [本文引用:1]
[97] Liang Y, Xie Y T, Ji H, et al. Excellent stability of plasma-sprayed bioactive Ca3ZrSi2O9 ceramic coating on Ti-6Al-4V. Appl. Surf. Sci. , 2010, 256(14): 4677-4681. [本文引用:1] [JCR: 2.112]
[98] 梁 莹. 等离子体喷涂氧化锆改性钙-硅基涂层制备与性能研究. 上海: 中国科学院上海硅酸盐研究所硕士论文, 2010: 34-36. [本文引用:1]
[99] Yang F, Xie Y T, Li H, et al. Human bone marrow-derived stromal cells cultured with a plasma sprayed CaO-ZrO2-SiO2 coating. J. Biomed. Mater. Res. B, 2010, 95B(1): 192-201. [本文引用:1] [JCR: 2.147]
100 Li K, Yu J, Xie Y T, et al. Chemical stability and antimicrobial activity of plasma sprayed bioactive Ca2ZnSi2O7 coating. J. Mater. Sci. - Mater. Med. , 2011, 22(12): 2781-2789. [本文引用:1]