研究论文

硫酸改性TiO2粒子的表征与电流变性能研究

  • 高 兰 ,
  • 马会茹 ,
  • 刘秧生 ,
  • 官建国
展开
  • (武汉理工大学 材料复合新技术国家重点实验室, 武汉 430070)

收稿日期: 2009-03-02

  修回日期: 2009-04-27

  网络出版日期: 2010-04-22

Characterization and Electrorheological Effect of H2SO4-modified TiO2 Particles

  • GAO Lan ,
  • MA Hui-Ru ,
  • LIU Yang-Sheng ,
  • GUAN Jian-Guo
Expand
  • (State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China)

Received date: 2009-03-02

  Revised date: 2009-04-27

  Online published: 2010-04-22

摘要

采用硫酸溶液浸渍TiO2干凝胶的方法制备了硫酸改性的TiO2粒子, 并组成了具有显著电流变性能的电流变材料. 用FT-IR、XRD、比表面积分析仪等表征了样品结构, 并测试了其电流变性能. 结果表明:由于硫酸根对晶粒生长的阻碍作用, 与纯TiO2粒子相比, 硫酸改性的TiO2粒子的晶粒尺寸降低, 比表面积提高, 并含有大量的强极性键SO. 当电场强度为3kV/mm时, 纯TiO2粒子电流变液的场致剪切应力与零场剪切应力之比(τE/τ0)仅为80, 而硫酸改性TiO2电流变液的τE/τ0高达500. 产生这些现象可归因于硫酸改性TiO2粒子带来的结构改变赋予其明显的界面极化能力.

本文引用格式

高 兰 , 马会茹 , 刘秧生 , 官建国 . 硫酸改性TiO2粒子的表征与电流变性能研究[J]. 无机材料学报, 2009 , 24(6) : 1121 -1124 . DOI: 10.3724/SP.J.1077.2009.01121

Abstract

H2SO4-modified TiO2 particles were prepared using a sol-gel method followed by impregnating the dry gels with sulphuric acid and were used to fabricate an electrorheological (ER) fluid with high ER activity. The as-synthesized H2SO4-modified TiO2 particles were characterized by fourier transform infrared (FT-IR), X-ray diffraction (XRD), BET N2 adsorption-desorption isotherm analysis, and the ER effect and dielectric spectra of the ER fluids were measured. The results show that H2SO4-modified TiO2 particles have smaller size of crystal grains and higher specific surface area due to the restraint of SO42- from the grain growth. Under the same measured condition and electric field strength of 3kV/mm, the ratio of fieldinduced shear stress to zero field shear stress (τE/τ0) of TiO2 particles is 80, while that of H2SO4-modified TiO2 particles is more than 500. The observed ER performances are reasonably explained by the stronger interfacial polarization, which is brought by the specific structures of the H2SO4-modified TiO2 particles.

参考文献

[1]Wen W J, Huang X X, Yang S H, et al. Nat. Mater., 2003, 2(11): 727-730.
[2]Xie H Q, Guan J G, Guo J S. J. Appl. Polym. Sci., 1997, 64(8): 1641-1647.
[3]Cao J G, Shen M, Zhou L W. J. Solid State Chem., 2006, 179(5): 1565-1568.
[4]Zhao X P, Yin J B. Chem. Mater., 2002, 14(5): 2258-2263.
[5]Wei J H, Shi J, Guan J G, et al. J. Mater. Sci., 2004, 39(10): 3457-3460.
[6]Shang Y L, Huo L, Jia Y L, et al. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008, 325(3): 160-165.
[7]Di K, Zhu Y H, Yang X L, et al. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006, 280(1/2/3): 71-75.
[8]Cheng Y C, Guo J J, Xu G J, et al. Colloid Polym. Sci., 2008, 286(7): 1493-1497.
[9]崔 波,高 鹏,金 青,等. 高等化学工程学报,2008, 22(1): 60-64.
[10]Yamaguchi S, Jin T, Tanabe K. Phys. Chem., 1986, 90(14): 3148-3152.
[11]Block H,Kelly J P, Qin A,et al. Langmuir., 1990, 6(1): 6-14.
文章导航

/