[1] |
SZABÓ C.Gasotransmitters in cancer: from pathophysiology to experimental therapy.Nat. Rev. Drug Discov., 2016, 15(3): 185-203.
|
[2] |
SZABÓ C.Hydrogen sulphide and its therapeutic potential.Nat. Rev. Drug Discov., 2007, 6(11): 917-935.
|
[3] |
FUKUMURA D, KASHIWAGI S, JAIN R K.The role of nitric oxide in tumour progression.Nat. Rev. Cancer., 2006, 6(7): 521-534.
|
[4] |
MOTTERLINI R, OTTERBEIN L E.The therapeutic potential of carbon monoxide. Nat. Rev. Drug. Discov., 2010, 9(9): 728-743.
|
[5] |
GALLEGO S G,BERNARDES G J L. Carbon-monoxide-releasing molecules for the delivery of therapeutic CO in vivo. Angew. Chem. Int. Ed., 2014, 53(37): 9712-9721.
|
[6] |
BIBHUTI B M, VIJAY A K R, GREGORY W M,et al. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1β Christian Bogdan. .Nat. Immunol., 2013, 14(1): 52-60.
|
[7] |
LALA P K, CHAKRABORTY C.Role of nitric oxide in carcinogenesis and tumour progression.Lancet Oncol., 2001, 2(3): 149-156.
|
[8] |
CHIN B Y, JIANG G, WEGIEL B,et al. Hypoxia-inducible factor 1alpha stabilization by carbon monoxide results in cytoprotective preconditioning.Proc. Natl. Acad. Sci. USA, 2007, 104(12): 5109-5114.
|
[9] |
OTTERBEIN L E, ZUCKERBRAUN B S, HAGA M,et al. Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury.Nat. Med., 2003, 9(2): 183-190.
|
[10] |
OTTERBEIN L E, BACH F H, ALAM J,et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat. Med., 2000, 6(4): 422-428.
|
[11] |
NASSOUR I, KAUTZA B, RUBIN M,et al. Carbon monoxide protects against hemorrhagic shock and resuscitation-induced microcirculatory injury and tissue injury.Shock, 2015, 43(2): 166-171.
|
[12] |
CARPENTER A W, SCHOENFISCH M H.Nitric oxide release: Part II. Therapeutic applications. Chem. Soc. Rev., 2012, 41(10): 3742-3752.
|
[13] |
DIRING S, WANG D O, KIM C,et al. Localized cell stimulation by nitric oxide using a photoactive porous coordination polymer platform. Nat. Commun., 2013, 4(10): 2684.
|
[14] |
KIM J, SARAVANAKUMAR G, CHOI H W,et al. A platform for nitric oxide delivery.J. Mater. Chem., 2014, 2(4): 341-356.
|
[15] |
RAJU T N.The Nobel chronicles. 1998: Robert Francis Furchgott (b 1911), Louis J Ignarro (b 1941), and Ferid Murad (b 1936).Lancet, 2000, 356(9226): 346.
|
[16] |
WEGIEL B, GALLO D, CSIZMADIA E,et al. Carbon monoxide expedites metabolic exhaustion to inhibit tumor growth. Cancer Res., 2013, 73(23): 7009-7021.
|
[17] |
MONCADA S, ERUSALIMSKY J D.Does nitric oxide modulate mitochondrial energy generation and apoptosis?.Nat. Rev. Mol. Cell Biol., 2002, 3(4): 214-220.
|
[18] |
MÓDIS K, BOS E M, CALZIA E,et al. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects.Br. J. Pharmacol., 2014, 171(8): 2123-2146.
|
[19] |
HE Q J.Precision gas therapy using intelligent nanomedicine.Biomater. Sci., 2017, 5(11): 2226-2230.
|
[20] |
ERNST A, ZIBRAK J D.Carbon monoxide poisoning.N. Engl. J. Med., 1998, 339(22): 1603-1608.
|
[21] |
SULLIVAN J B, KRIEGER G B, THOMAS R J.Methemoglobin-forming chemicals in hazardous materials toxicology: clinical principals of environmental health.J. Occup. Environ. Med., 1992, 34(4): 365-371.
|
[22] |
RIDNOUR L A, THOMAS D D, DONZELLI S,et al. The biphasic nature of nitric oxide responses in tumor biology.Antioxid. Redox. Sign., 2006, 8(7/8): 1329-1337.
|
[23] |
WANG L Z, SHI J L, YUN J,et al. Research progress of mesoporous silicon materials.J. Inorg. Mater., 1999, 14(3): 333-342.
|
[24] |
SHI J L, CHEN Y, CHEN H R.Research progress of multifunctional mesoporous silica based nanoparticles for diagnosis and treatment.J. Inorg. Mater., 2013, 28(1): 1-11.
|
[25] |
HE Q J, SHI J L.MSN anti-cancer nanomedicines: chemotherapy enhancement, overcoming of drug resistance and metastasis inhibition.Adv. Mater., 2014, 26(3): 391-411.
|
[26] |
ZHOU Y L, FENG X X, ZHAI W Y.Research on loading and release of Epirubicin with mesoporous bioactive glass.J. Inorg. Mater., 2011, 26(1): 68-72.
|
[27] |
HE Q, KIESEWETTER D O, QU Y,et al. NIR-responsive on-demand release of CO from metal carbonyl-caged graphene oxide nanomedicine.Adv. Mater., 2015, 27(42): 6741-6746.
|
[28] |
FAN J, HE N Y, HE Q J,et al. A novel self-assembled sandwich nanomedicine for NIR-responsive release of NO.Nanoscale, 2015, 7(47): 20055-20062.
|
[29] |
GARCIA J V, YANG J, SHEN D,et al. NIR-triggered release of caged nitric oxide using upconverting nanostructured materials.Small, 2012, 8(24): 3800-3805.
|
[30] |
ZHANG X, TIAN G, YIN W,et al. Controllable generation of nitric oxide by near-infrared-sensitized upconversion nanoparticles for tumor therapy. Adv. Funct. Mater., 2015, 25(20): 3049-3055.
|
[31] |
FAN J, HE Q, LIU Y,et al. Light-responsive biodegradable nanomedicine overcomes multidrug resistanc.via NO-enhanced chemosensitization. ACS Appl. Mater. Interfaces, 2016, 8(22): 13804-1381.
|
[32] |
WOO C H, JIHOON K, JINHWAN K,et al. Light-induced acid generation on a gatekeeper for smart nitric oxide delivery.ACS Nano, 2016, 10(4): 4199-4208.
|
[33] |
OSTROWSKI D, LIN B F, TIRRELL M V,et al. Liposome encapsulation of a photochemical NO precursor for controlled nitric oxide release and simultaneous fluorescence imaging.Mol. Pharm., 2012, 9(10): 2950-2955.
|
[34] |
WANG P G, XIAN M, TANG X P,et al. Nitric oxide donors: Chemical activities and biological applications.Chem. Rev., 2002, 102(4): 1091-1134.
|
[35] |
RIMMER R D, PIERRI A E, FORD P C.Photochemically activated carbon monoxide release for biological targets. toward developing air-stable photoCORMs labilized by visible light.Coordin. Chem. Rev., 2012, 256(15/16): 1509-1519.
|
[36] |
ZHENG D W, LI B, LI C X, et al. Photocatalyzing CO2 to CO for enhanced cancer therapy.Adv. Mater., 2017, 29(44): 1703822-1-8.
|
[37] |
Reddy G U, AXTHELM J, HOFFMANN P,et al. Co-registered molecular logic gate with a CO-releasing molecule triggered by light and peroxide.J. Am. Chem. Soc., 2017, 139(14): 4991-4994.
|
[38] |
CHEN L J, HE Q J, LEI M Y,et al. Facile coordination-precipitation route to insoluble metal roussin’s black salts for NIR-responsive release of NO for anti-metastasis.ACS Appl. Mater. Interfaces., 2017, 9(42): 36473-36477.
|
[39] |
MARIN A, MUNIRUZZAMAN M, RAPOPORT N.Mechanism of the ultrasonic activation of micellar drug delivery. J. Control. Release, 2001, 75(1/2): 69-81.
|
[40] |
POSTEMA M, BOUAKAZ A,CATE F J T,et al. Nitric oxide delivery by ultrasonic cracking: some limitations.Ultrasonics, 2006, 44(Suppl.): e109-e113.
|
[41] |
JIN Z, WEN Y, HU Y,et al. MRI-guided and ultrasound-triggered release of NO by advanced nano-medicine.Nanoscale, 2017, 9(10): 3637-3645.
|
[42] |
FAN W, BU W, HE Q,et al. X-ray radiation-controlled NO-release for on-demand depth-independent hypoxic radiosensitization.Angew. Chem. Int. Ed., 2015, 54(47): 14026-14030.
|
[43] |
JIN Z, WEN Y, XIONG L,et al. Intratumoral H2O2-triggered release of CO from a metal carbonyl-based nanomedicine for efficient CO therapy. Chem. Commun., 2017, 53(40): 5557-5560.
|
[44] |
FAN W, LU N, HUANG P,et al. Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic cancer starving-like/gas therapy.Angew. Chem. Int. Ed., 2016, 55(1): 1-6.
|
[45] |
HE Q J, GUO S R, QIAN Z Y,et al. Development of individualized anti-metastasis strategies by engineering nanomedicines. Chem. Soc. Rev., 2015, 44(17): 6258-6286.
|
[46] |
GUI R J, WAN A J, ZHANG Y L,et al. Light-triggered nitric oxide release and targeted fluorescence imaging in tumor cells developed from folic acid-graft-carboxymethyl chitosan nanospheres.RSC Adv., 2014, 4(57): 30129-30136.
|
[47] |
ZHANG X F, MANSOURI S, MBEH D A,et al. Nitric oxide delivery by core/shell superparamagnetic nanoparticle vehicles with enhanced biocompatibility.Langmuir, 2012, 28(35): 12879-12885.
|
[48] |
XIANG J, AN L, TANG W W,et al. Photo-controlled targeted intracellular delivery of both nitric oxide and singlet oxygen using a fluorescencence trackable ruthenium nitrosyl functional nanoplatform.Chem. Commun., 2015, 51(13): 2555-2558.
|
[49] |
CHAKRABORTY I, JIMENEZ J, SAMEERA W M,et al. Luminescent Re(I) carbonyl complexes as trackable PhotoCORMs for CO delivery to cellular targets. Inorg. Chem., 2017, 56(5): 2863-2873.
|
[50] |
JI X, ZHOU C, JI K,et al. Click and release: a chemical strategy toward developing gasotransmitter prodrugs by using an intramolecular Diels-Alder reaction.Angew. Chem. Int. Ed., 2016, 55(1): 1-7.
|
[51] |
CARRINGTON S J, CHAKRABORTY I, BERNARD J M L,et al. A theranostic two-tone luminescent PhotoCORM derived from Re(I) and (2-pyridyl)-benzothiazole: trackable CO delivery to malignant cells.Inorg. Chem., 2016, 55(16): 7852-7858.
|
[52] |
CHAKRABORTY I, CARRINGTON S J, HAUSER J,et al. Rapid eradication of human breast cancer cells through trackable light- triggered CO delivery by mesoporous silica nanoparticles packed with a designed photoCORM.Chem. Mater., 2015, 27(24): 8387-8397.
|
[53] |
CARRINGTON S, CHAKRABORTY I, BERNARD J M L,et al. Synthesis and characterization of a “turn-on” photoCORM for trackable CO delivery to biological targets.ACS Med. Chem. Lett., 2014, 5(12): 1324-1328.
|