碳化硅纤维增强碳化硅(SiCf/SiC)复合材料具有低中子毒性、耐中子辐照和耐高温氧化等特性, 成为先进核能系统重要的候选结构材料。近年来, 国内外学术界和工业界针对核用SiCf/SiC复合材料开展了大量研究工作, 取得了一系列重要的研究进展。针对SiCf/SiC复合材料面向核用所关注的重点方向, 如核用SiC纤维、纤维/基体界面相、复合材料制备工艺、数值仿真、腐蚀行为和表面防护、连接技术以及辐照损伤等方面, 本文进行了综述和讨论, 并针对核用要求指出了SiCf/SiC复合材料存在的主要问题和可能的解决思路, 希望对该材料的进一步研发和最终应用有所裨益。
闪烧是近些年广受关注的一种电场辅助烧结技术。本文介绍了闪烧的起源与发展, 并对闪烧的基本特征进行了分析。在闪烧孕育与引发过程的研究方面, 发现了孕育阶段的非线性电导特征和电化学黑化现象, 提出了氧空位主导的缺陷机制; 在闪烧阶段的快速致密化研究方面, 提出了电场作用导致的缺陷产生和运动会在粉体颗粒间产生库仑力, 有利于烧结前期的致密化过程, 同时发现闪烧致密化过程中还伴随着金属阳离子的快速运动; 在闪烧阶段的晶粒生长和微结构演变方面, 发现了试样温度沿电流方向呈非对称分布, 试样中间位置的晶界迁移率明显提高, 提出电化学缺陷对微观结构有重大影响。基于上述研究成果, 本团队利用电场作用下出现的低温快速传质现象, 发展了陶瓷闪焊技术, 实现了同种陶瓷/陶瓷、陶瓷/金属, 甚至异种陶瓷/陶瓷之间的快速连接; 发展了陶瓷闪烧合成技术, 不仅实现了典型氧化物陶瓷的快速合成, 而且实现了高熵陶瓷和具有共晶形貌的氧化物陶瓷的快速合成; 发展了氧化物陶瓷的电塑性成形技术, 初步实现了氧化锆陶瓷低温低应力下的快速拉伸和弯曲变形。本文最后总结了闪烧机理研究面临的挑战, 并从焦耳热效应和非焦耳热效应两方面展望了闪烧的发展方向, 期望对闪烧技术在国内的发展有所裨益。
自发凝固成型是一种新型的陶瓷浆料原位固化成型方法, 通过吸附在陶瓷颗粒表面的分子链间弱作用(氢键, 疏水作用)实现浆料的固化, 具有普适性和适于常温大气环境操作的特点, 已成为先进陶瓷制备领域的研究热点。本文简述发现兼具分散和凝固功能的阴离子型高分子分散剂的历程, 以及自发凝固成型与其它原位固化成型的异同。在此基础上, 基于疏水作用设计合成了系列自发凝固成型剂, 进而满足以不同尺寸颗粒为原料的致密陶瓷和泡沫陶瓷的自发凝固成型。综述了面向实际应用所开发的陶瓷无界面连接、晶粒定向构造、干燥脱水等关键技术, 以及致密陶瓷和泡沫陶瓷制备等研发进展, 展望了未来自发凝固成型的发展方向。
陶瓷以其优异的热物理化学性能在航空航天、能源、环保以及生物医疗等领域具有极大的应用潜力。随着这些领域相关技术的快速发展, 其核心零件部件外形结构设计日益复杂、内部组织逐步走向定制化、梯度化。陶瓷具有硬度高、脆性大等特点, 较难通过传统的加工成形方法实现异形结构零件的制造, 最终限制了陶瓷材料的工程应用范围。激光增材制造技术作为一种快速发展的增材制造技术, 在复杂精密陶瓷零部件的制造中具有显著优势: 无模、精度高、响应快以及周期短, 同时能够实现陶瓷零件组织结构灵活调配, 有望解决上述异形结构陶瓷零件成形问题。本文综述了多种基于粉末成形的激光增材制造陶瓷技术: 基于粉末床熔融的激光选区烧结和激光选区熔化; 基于定向能量沉积的激光近净成形技术。主要讨论了各类激光增材陶瓷技术的成形原理与特点, 综述了激光选区烧结技术中陶瓷坯体后处理致密化工艺以及激光选区熔化和激光近净成形技术这两种技术中所打印陶瓷坯体基体裂纹开裂行为分析及其控制方法的研究进展, 对比分析了激光选区烧结、激光选区熔化以及激光近净成形技术在成形陶瓷零件的技术特征, 最后展望了激光增材制造陶瓷技术的未来发展趋势。
压电陶瓷是一种可以实现机械信号和电信号相互转换的功能陶瓷。由压电陶瓷与有机相构成的复合材料具有不同的宏观连接方式, 这不仅决定了压电器件广泛的应用场合, 而且推动了压电陶瓷材料和器件多样化的成型技术发展。与传统成型技术相比, 增材制造技术的最大优势在于无需模具即可实现外形复杂的小批量样品快速成型, 这与多样化的压电陶瓷及其器件研发需求十分契合, 同时因其样品后续加工量少、原材料利用率高、无需切削液的特点, 得到了学术界和工业界的广泛关注。在陶瓷材料增材制造领域, 功能陶瓷和器件的研究仍在增长期。本文从不同增材制造技术角度, 探讨和对比现阶段无铅和含铅压电陶瓷增材制造的发展历史、原料制备、外形设计、功能特性检测及试样的应用, 并根据现阶段各增材制造技术的优、劣势对其未来进行了展望。
特种陶瓷广泛应用于航天航空、电子信息、新能源、机械、化工等新兴工业领域, 其高温制备过程仍以传统燃气窑炉和电加热炉为主; 碳排放高、能耗大, 节能减排形势严峻。当前, 我国面临实现“双碳”目标的巨大压力, 研究推广清洁高效的加热技术迫在眉睫。微波加热是利用材料自身对微波进行吸收, 将电磁能转化为热能, 能量的转移发生在分子水平上, 通过这种方式, 加热在整个材料内外同时产生, 整个材料体系中的温度梯度非常低。除体积加热外, 选择性加热、功率再分配、热剧变以及微波等离子效应等也是微波烧结的显著特征。微波加热具有节能环保、改善制品性能、减少燃烧碳排放等优点, 国内外有许多关于微波合成各种氧化物、碳化物、氮化物陶瓷粉体和微波烧结陶瓷复合材料的报道。本文首先对微波和微波混合烧结的基本理论进行综述, 然后介绍了微波加热制备陶瓷粉体与微波烧结制备陶瓷材料的最新研究进展, 最后总结了微波加热在陶瓷工程制品烧结中的一些研究成果, 体现出微波烧结的优越性, 并提出了微波烧结制备特种陶瓷的关键问题和今后的发展方向。
随着纳米医学的发展, 利用纳米材料在外源超声波的刺激下催化产生过量的活性氧物种(Reactive Oxygen Species, ROS)以治疗疾病的方法, 被称为声动力疗法(Sonodynamic Therapy, SDT), 已引起人们的广泛关注。目前, 开发可用于SDT的高效声敏剂用于提高ROS产率, 仍然是当前研究和未来临床转化的最大挑战之一。近年来, 得益于压电电子学和压电光电子学的兴起, 基于压电半导体纳米材料的新型声敏剂在SDT中崭露头角, 显示出良好的应用前景。本文从压电半导体的结构出发, 介绍了压电半导体纳米材料应用于SDT的机理研究, 以及利用压电半导体纳米材料作为声敏剂在声动力学癌症治疗及相关抗菌性能方面所取得的研究进展。最后, 本文对该领域存在的问题以及未来的发展趋势进行了展望。
二维过渡金属碳化物、氮化物或碳氮化物(MXenes)已成为二维材料中一个新兴的热点领域。MXenes材料具有优异的电子传递性能、出色的光热转换性能、较高的比表面积、良好的生物相容性和低毒性等特点, 在肿瘤诊疗中显示出良好的应用前景。本文简要总结了MXenes的制备方法, 包括氢氟酸法、氟盐法、熔融盐法、碱辅助水热法和化学气相沉积法, 及其稳定性、机械性质、光学性质和电学性质。重点综述了MXenes在肿瘤诊疗中的应用, 包括光热治疗、多模式联合治疗、构建MXenes表面介孔材料的联合治疗和MXenes主动靶向联合治疗, 以及建立MXenes诊断-治疗一体化平台。最后简要介绍了MXenes可能辅助肿瘤诊疗的其他特性及其应用, 并阐述了MXenes在肿瘤诊疗中存在的挑战以及未来发展前景。
铌酸钾钠(K0.5Na0.5NbO3, KNN)基陶瓷具有充放电速度快、透明度高、应用温度范围宽、使用寿命长等优点, 在脉冲功率器件等领域具有广阔的应用前景。通过改性技术提高铌酸钾钠基陶瓷的电、光性能是该方向的研究热点。本研究采用固相法制备0.825(K0.5Na0.5)NbO3-0.175Sr1-3x/2Lax(Sc0.5Nb0.5)O3(x=0, 0.1, 0.2, 0.3)陶瓷(简称0.825KNN- 0.175SLSN), 研究La2O3掺杂对其相结构、微观形貌、光学、介电、铁电及储能性能的影响。研究结果表明: 0.825KNN- 0.175SLSN陶瓷具有高对称性的伪立方相结构; 随着La2O3掺杂量增大, 陶瓷的平均晶粒尺寸减小, 相变温度(Tm)及饱和极化强度(Pmax)增大, 达到峰值后下降。在x=0.3时, 该体系陶瓷表现出优异的透明性, 在可见光波长(780 nm)及近红外波长(1200 nm)范围内透过率分别达65.2%及71.5%, 同时实现了310 kV/cm的击穿场强和1.85 J/cm 3的可释放能量密度。
压电陶瓷作为一类重要的功能陶瓷材料, 具备高强度、高硬度、耐腐蚀等优点, 可实现机械能和电能间的相互转换, 常被用于制备传感器、驱动器、电容器等压电器件, 在海洋探测、生物医疗、电子通讯等高端装备中发挥着重要作用。针对高端技术领域对压电功能器件智能化、集成化、轻量化的发展需求, 压电陶瓷的外形和结构越来越复杂。注浆、注射、模压、切割等传统的压电陶瓷制造工艺, 大多需借助模具或刀具完成, 很难甚至无法制造具有中空、悬垂等复杂结构的压电陶瓷, 制约了压电功能器件的进一步发展。增材制造技术基于逐层累加原理可实现任意复杂结构快速定制, 具有成型效率高、无需模具等优点, 可满足个性化、整体化、复杂化制造需求, 近年来受到国内外压电陶瓷领域研究人员的广泛关注。本文从粉体、浆料、块材三种原材料形态角度, 综述了当前增材制造压电陶瓷的主要工艺种类及发展现状, 综合对比了各种工艺成型特点; 介绍了增材制造压电陶瓷在不同领域的应用进展; 最后, 总结和展望了增材制造压电陶瓷所面临的挑战和未来可能的发展趋势。
氧还原(ORR)反应是燃料电池等清洁能源阴极的关键反应, 其反应动力学复杂, 阴极需使用Pt等贵金属催化剂。然而Pt价格昂贵, 且载体炭黑在高电位环境下稳定性欠佳, 导致电池部件成本高且寿命短。二维过渡金属硫属化合物(2D TMDs)具有高比表面积与可调节的电学性能, 且稳定性强, 有望在维持活性的同时提高燃料电池阴极的耐久性。本文梳理了近年来2D TMDs在ORR催化剂领域的最新研究进展: 首先概述了2D TMDs的结构、性质及ORR反应机理; 其次分析了调控2D TMDs的ORR性能策略, 包括异质元素掺杂、相转变、缺陷工程与应力工程等, 介绍了2D TMDs基异质结构对ORR性能的提升作用; 最后, 针对该领域目前存在的挑战进行展望与总结。
目前光固化3D打印技术因打印成型精度高而被广泛应用于陶瓷增材制造, 其中非氧化物陶瓷如碳化硅、氮化硅等因打印材料粉体折射率和吸光度比较高, 光固化陶瓷浆料存在分散稳定性差、入射光难穿透并产生光固化反应的固化层厚度低等问题, 导致其固含量很难提高甚至于无法打印成型。高固含量的非氧化物陶瓷打印成型成为光固化3D打印的主要难点, 吸引了广大学者对其光固化机理、粉体调控等机制进行研究。本文系统地总结了几种非氧化物陶瓷光固化浆料的制备、光固化成型、有机物去除及烧结致密化的研究工作, 并就如何对光敏树脂组成进行调节、对陶瓷粉体进行改性的几种方法进行分析与讨论, 针对性地提出创新方案来改善非氧化物陶瓷的浆料性能、光固化打印优化和致密化缺陷修复及性能提升, 最终推动大尺寸、复杂结构的非氧化物陶瓷部件光固化增材制造高精度制备技术的进步。
碳化硅纳米线具有优异的电磁吸收性能, 三维网络结构可以更好地使电磁波在空间内被多次反射和吸收。通过抽滤的方法制备得到体积分数20%交错排列的碳化硅纳米线网络预制体。然后采用化学气相渗透工艺制备热解炭界面和碳化硅基体, 并通过化学气相渗透和前驱体浸渍热解工艺得到致密的SiCNWs/SiC陶瓷基复合材料。甲烷和三氯甲基硅烷分别是热解炭和碳化硅的前驱体, 随着热解碳质量分数从21.3%增加到29.5%, 多孔SiCNWs预制体电磁屏蔽效率均值在8~12 GHz (X)波段从9.2 dB增加到64.1 dB。质量增重13%的热解碳界面修饰的SiCNWs/SiC陶瓷基复合材料在X波段平均电磁屏蔽效率达到37.8 dB电磁屏蔽性能。结果显示, SiCNWs/SiC陶瓷基复合材料在新一代军事电磁屏蔽材料中具有潜在应用前景。
陶瓷, 是一种历史悠久且应用广泛的无机非金属材料, 在人类文明进程中扮演着至关重要的角色。如今, 陶瓷因其优异的物理和化学性能得到大量的研究和使用, 结构和功能属性复杂的先进陶瓷材料尤其在机械电子、能源环保、航空航天、生物医疗等高新技术领域占据不可或缺的地位。然而, 陶瓷材料固有的高硬度和高脆性, 使得在制造高度复杂的三维空间形状或定制化结构与功能产品的时候, 传统的模具成形和加工技术往往面临难度高、周期长的技术局限。增材制造的出现则为突破上述局限提供了全新思路。增材制造技术最早被称为无模制造或快速原型技术, 直到21世纪才日渐普及并通称为3D打印技术。美国在20世纪80年代发明的适用于有机树脂溶液的“立体光刻-Stereolithography (SL)”光固化增材制造技术, 和90年代诞生于德国适用于金属粉末的“选区激光熔化-Selective Laser Melting (SLM)”增材制造技术是具有划时代意义且最具代表性的增材制造技术。国际上已经开发了十余种应用于各类材料的增材制造技术。与有机材料和金属材料相比, 一般陶瓷材料的物理和化学活性较低且熔点较高, 因此部分用于有机和金属材料的增材制造工艺无法直接用于陶瓷增材制造。尽管如此, 目前已知的大部分陶瓷增材制造技术仍源自有机材料和金属材料增材制造技术, 导致陶瓷材料的增材制造发展困难, 且发展历史也相对短暂。增材制造在制造高度复杂结构时所展示的独特灵活性, 以及组织与功能的定制化优势, 让国内外研究人员趋之若鹜, 纷纷投身于陶瓷材料增材制造及其应用研究当中。近年来, 我国在陶瓷增材制造领域涌现出许多优秀的研究团队与企业。根据2021年7月由深圳大学陈张伟教授等学者创办的“第一届中国陶瓷增材制造前沿科学家论坛(FAME2021)”的初步统计, 目前我国已有超过60所专门从事陶瓷增材制造与应用探索研究的科研院所, 而发展和制造与陶瓷增材制造技术相关的材料、打印工艺装备以及后处理工艺装备的生产商则超过了20家。目前, 产学界以陶瓷粉末和树脂或黏接剂混合的浆料进行光固化, 以SL和数字光处理(Digital Light Processing, DLP)或墨水直写(Direct Ink Writing, DIW)增材制造工艺的研究占绝大多数。除此以外, 其他研究则以激光选区烧结(Selective Laser Sintering, SLS)和激光定向能量沉积(Laser Directed Energy Deposition, LDED)等采用陶瓷混合粉末及高功率激光的工艺进行直接增材制造为主。在陶瓷材料种类方面, 大部分学者围绕氧化物陶瓷材料, 如SiO2、ZrO2、Al2O3及其混合或复相材料, 以及PZT、BTO、TCP等先进陶瓷材料开展研究。主要应用方向包括承重组件或功能性部件, 如催化载体、铸型、隔热、压电、传感、人工骨、齿科、超高温部件、精密光学件等。而近年来研究人员也纷纷面向结构功能一体化部件, 围绕非氧化物陶瓷如SiC、Si3N4、AlN, 甚至更为复杂、可生成多元陶瓷的聚合物前驱体转化陶瓷(Polymer-Derived Ceramics, PDCs)体系等进行增材制造工艺研究, 并取得突出进展。总体而言, 陶瓷增材制造过程是以陶瓷基材料为“墨”, 以光能、机械能、热能等能源为“笔”, 就如同中国神话故事“神笔马良”一样“画出”各种结构功能一体化的复杂陶瓷器件。值得注意的是, “神笔马良”最终练就的是“所画即所得”的效果。笔者认为, 这恰恰就是增材制造或3D打印追求的终极目标, 即“所打(印)即所得”。当然, 在陶瓷增材制造领域实现“所打即所得”还需要克服诸多挑战。由于陶瓷具有纷繁复杂的材料性质, 在采用各类方法进行增材制造的过程中均涉及材料体系的制备、成形工艺的适配、热处理或后处理工艺的优化等问题。正因如此, 在用于成形制造、变形和缺陷抑制、组织和性能调控等方面的材料选取及控制上均需要予以细致全面的考虑和权衡。2021年下半年, 在FAME2021大会召开之际, 《无机材料学报》编辑部邀请香港城市大学吕坚院士和深圳大学陈张伟教授担任特邀编辑, 以“无机材料增材制造”为主题组织征稿并制作专辑, 华中科技大学吴甲民副教授亦参与了这次专辑的组织工作。本专辑收录了我国部分陶瓷增材制造的最新研究成果和综述文章, 体现了我国陶瓷增材制造研究的前沿进展。由于时间和篇幅所限, 还有一些优秀的研究未能及时收录在本专辑中。希望本专辑能够抛砖引玉, 为促进我国陶瓷增材制造研究与应用发展提供有益参考。我们相信在全球学者的不懈努力和推动下, 聚能为笔, 化陶成墨, 陶瓷增材制造一定能够镌刻神笔马良新篇章, 完成从“聚沙成塔”的工艺工程研究到“点石成金”的高附加值普及应用的飞跃。
三元锂离子动力电池的开发和应用受制于高温高电压条件下的容量衰减和电池产气鼓胀等技术难题。解决这些问题一方面要注重电极材料改性和电池设计, 另一方面还依赖于电解液的技术进步。本研究报道了四乙烯基硅烷(Tetravinylsilane, TVS)作为LiNi0.6Co0.2Mn0.2O2(NCM622)/石墨软包电池的电解液添加剂, 可以显著改善电池的高温(45~60 ℃) 高电压(4.4 V)性能, 包括存储和循环性能。结果表明, 电解液中含有质量分数0.5% TVS的电池在2.8~4.4 V区间, 1C (1C=1.1 Ah)倍率下循环400次后的容量保持率达到92%, 而电解液中未添加TVS的软包电池仅为82%。进一步研究表明, 一方面TVS高电压下优先被氧化, 可以在NCM622颗粒表面形成耐高温的CEI膜, 有效抑制NCM622颗粒内部裂纹和过渡金属离子溶出; 另一方面, TVS在低电位下还可以优先被还原, 在石墨负极表面聚合形成稳定的SEI膜, 抑制电解液与负极之间的副反应。
临床医学和生物材料的蓬勃发展, 促进了多种疾病的诊断成像、有效治疗和精准诊疗。材料与医学交叉学科(简称“材料医学”)的发展旨在克服传统临床医学面临的主要障碍和挑战, 如系统性毒性、生物利用度差、靶向部位特异性低、诊断/治疗效果不理想等。本文系统地阐述了近年来各种医学材料在疾病诊断、治疗和诊疗方面的应用进展, 特别是纳米医学材料的研究进展。首先, 重点讨论癌症治疗领域的生物医学成像(如光学成像、磁共振成像、超声成像、计算机断层成像等)和治疗策略(如光热治疗、动力学治疗、免疫治疗、协同治疗等)。此外, 我们还重点介绍了医学材料对骨组织工程、呼吸系统、中枢神经系统等疾病的诊断和治疗的最新进展, 并重点阐述了用于生物传感和抗微生物等其他代表性生物医学领域的医学材料。最后, 我们讨论了这些独特的医学材料在实际临床转化和应用中所面临的挑战和未来的机遇, 以促进其早日实现临床转化, 推动医学进步和造福患者。
石墨相氮化碳(g-C3N4)具有独特的二维平面结构和半导体能带结构, 广泛应用于光催化。但其又存在光生电子空穴对复合过快、可见光利用效率低、在水中分散性差等问题, 阻碍了其实际应用。本研究以海藻酸钠制备的水凝胶为基体, 通过与负载银纳米颗粒(AgNPs)的g-C3N4复合, 提升光生电子-空穴的分离效率, 同时解决催化剂在水中的分散性问题, 改善其光催化性能。首先, 采用热聚合法合成g-C3N4, 结合超声的高能量使其剥离成纳米片; 然后采用溶液法在g-C3N4表面原位生成银纳米颗粒, 制备得到负载银纳米颗粒的g-C3N4(Ag@C3N4); 最后以海藻酸钠(SA)为前驱体通过钙离子交联的方法得到负载有Ag@C3N4的水凝胶(SA/Ag@C3N4)。通过不同手段表征SA/Ag@C3N4的形貌、微观结构和相组成; 以甲基橙为模型物, SA/Ag@C3N4的光催化降解速率是Ag@C3N4的2.5倍。通过光致发光谱、时间分辨光致发光谱、电子顺磁共振波谱等表征手段对材料的催化机理进行探究。结果显示, 体系中银纳米颗粒表面等离子体共振效应与海藻酸钠水凝胶的多孔结构及传质通道发挥协同效应, 促进了光催化性能的提升。
电卡效应是指电介质材料中由于施加或去除电场导致的材料温度变化的现象, 包括正电卡效应和负电卡效应两种类型。电卡效应作为一种高效率、无噪音、环境友好的制冷效应, 在固态制冷特别是集成电路制冷领域显示出广阔的应用前景, 在过去的几十年中吸引了科研人员广泛的研究兴趣。研究表明, 通过结合正负电卡效应, 可以显著提高电卡效应的制冷能力。与正电卡效应不同, 负电卡效应因其独特的物理起源, 调控手段极为有限。本文以负电卡效应为中心, 重点介绍反铁电材料中负电卡效应的最新研究进展, 具体内容包括以下四个部分: 首先, 从电卡效应的研究历史出发, 介绍了电卡效应的制冷原理, 介绍了一个典型的能将正、负电卡效应结合的双制冷循环; 其次, 介绍了基于Maxwell关系的负电卡效应间接测试方法, 以及几种负电卡效应直接测试方法, 并讨论了不同方法的适用条件和优缺点; 再次, 以典型的负电卡效应材料——反铁电材料为例, 着重介绍了负电卡效应的物理起源, 综述了反铁电薄膜和反铁电块体材料中的负电卡效应, 并对其它铁电材料中的负电卡效应做了简要介绍; 最后, 对负电卡效应的研究进行了总结和展望。
二维过渡金属硫化合物是构建纳米电子器件的理想材料, 基于该材料体系开发用于信息存储和神经形态计算的忆阻器, 受到了学术界的广泛关注。受制于低成品率和低均一性问题, 二维过渡金属硫化合物忆阻器阵列鲜见报道。本研究采用化学气相沉积得到厘米级二维碲化钼薄膜, 并通过湿法转移和剥离工艺制备得到碲化钼忆阻器件。该碲化钼器件表现出优异的保持性(保持时间>500 s)、快速的阻变(SET时间~60 ns, RESET时间~280 ns)和较好的循环寿命(阻变2000圈后仍可正常工作)。该器件具有高成品率(96%)、低阻变循环间差异性(SET过程为6.6%, RESET过程为5.2%)和低器件间差异性(SET过程为19.9%, RESET过程为15.6%)。本工作成功制备出基于MoTe2的3×3忆阻器阵列。在此基础上, 将研制的MoTe2器件用于手写体识别, 实现了91.3%的识别率。最后, 通过对MoTe2器件高低阻态的电子输运机制进行拟合分析, 揭示了该器件阻变源于类金属导电细丝的通断过程。本项工作表明大尺寸二维过渡金属硫化合物在未来神经形态计算中具有巨大的应用潜力。
无粘结剂cBN材料制作的切削刀具韧性较差, 并且这种材料的合成压力高。为此, 本研究在工业压力下制备了超硬、高韧的新型无粘结剂层状BN增韧cBN (Lt-cBN)块材, 通过切削硬质合金实验, 分析了Lt-cBN材料内部微观结构对其切削性能和耐磨性的影响。研究结果表明: Lt-cBN材料的韧性高达8.5 MPa·m1/2, 可超精密切削硬质合金, 获得了粗糙度Ra低于10 nm的超光滑表面; Lt-cBN材料内部存在少量层状BN, 不仅提高了韧性, 还降低了表层材料的非晶化程度及磨损速率; 相对于商品化的纯相cBN材料, Lt-cBN材料展现出更好的切削性能和耐磨性; Lt-cBN材料的主要磨损形式为后刀面的部分非晶化, 并在摩擦作用下逐渐被去除而导致的磨料磨损。
钛酸钡(BaTiO3)具有优异的介电、铁电、压电和热释电等性能, 在微电子机械系统和集成电路领域具有广泛的应用。降低BaTiO3薄膜的制备温度使其与现有的CMOS-Si工艺兼容, 已成为应用研究和技术开发中亟需解决的问题。本研究引入与BaTiO3晶格常数相匹配的LaNiO3作为缓冲层, 以调控其薄膜结晶取向, 在单晶Si(100)基底上450 ℃溅射制备了结构致密的柱状纳米晶BaTiO3薄膜。研究表明:450 ℃溅射温度在保持连续柱状晶结构和(001)择优取向的前提下, 能获得相对较大的柱状晶粒(平均晶粒直径27 nm), 一定残余应变也有助于其获得了较好的铁电和介电性能。剩余极化强度和最大极化强度分别达到了7和43 μC·cm-2。该薄膜具有良好的绝缘性, 在 0.8 MV·cm-1电场下, 漏电流密度仅为10-5 A·cm-2。其相对介电常数εr展现了优异的频率稳定性:在1 kHz时εr为155, 当测试频率升至1 MHz, εr仅轻微降低至145。薄膜的介电损耗较小, 约为0.01~0.03 (1 kHz ~ 1 MHz)。通过电容-电压测试, 该薄膜材料展示出高达51%的介电调谐率, 品质因子亦达到17(@1 MHz)。本研究所获得的BaTiO3薄膜在介电调谐器件中有着良好的应用前景。
石墨烯因其优异的导电性、优越的柔韧性和环境稳定性, 在可穿戴电子纺织品领域发挥了重要作用。本工作通过丝网印刷技术分别将自制的石墨烯浆料和复合热致变色油墨印在聚酯织物的正反面, 构筑了一种石墨烯基绿-黄可逆电热致变色织物。采用SEM、XRD以及FTIR等分析了织物的结构性质和变色原理, 采用红外热成像仪及全色差色度仪研究了织物的热学以及变色性能。结果表明:石墨烯电热致变色织物厚度约为250 μm, 在12 V电压下逐渐加热超过45 ℃, 焦耳热主要通过热传导至变色层, 结晶紫内酯的闭开环实现绿-黄可逆变色, 其变色响应时间约为15 s, 褪色响应时间约为27 s。石墨烯电热致变色织物经历30°~180°的弯曲角度后, 电压-电流曲线保持稳定。经200次加热/冷却循环后, 性能未发生明显衰退。本研究成功制备了颜色在绿-黄之间变化、响应迅速、循环性能良好的可逆电热致变色织物:石墨烯膜‖聚酯织物‖热致变色膜, 在军事伪装和可穿戴显示领域有一定的应用前景。
锂离子电池作为一种绿色可充电电池, 具有较高的能量密度及功率密度, 但市售锂离子电池主要以有机物为电解液, 当电池过充或短路时存在一定的燃烧及爆炸风险。为应对此问题, 水系锂离子电池逐渐走进人们的视野, 它具有清洁环保、安全性能高等优点, 其工作电压为1.5~2.0 V, 主要应用于储能领域。考虑到水系电池的析氢析氧反应, 常规负极材料无法应用于水系锂离子电池, 因此水系锂离子电池的研发关键在于负极材料的选取。LiTi2(PO4)3具有开放的三维通道以及合适的嵌锂电位, 可以作为水系锂离子电池的负极材料。LiTi2(PO4)3的合成方法主要有高温固相法、溶胶-凝胶法和水热法等。为进一步提高LiTi2(PO4)3的电化学性能, 可以采用颗粒纳米化、形貌控制、元素掺杂及碳包覆等方式进行改性。本文从合成方法及改性手段的角度, 对近年来国内外水系锂离子电池负极材料LiTi2(PO4)3的研究进行综述, 并对LiTi2(PO4)3负极材料的发展前景做出展望。
传统“荧光粉+有机硅脂”荧光转换体的热导率低, 且物理化学稳定性差, 不能应用于高功率白光LED领域。全无机荧光块体材料可以规避有机封装, 具有更高的热导率, 但这类材料面临着成本高且极难实现立体结构的问题。本工作基于非晶态纳米二氧化硅, 得到一种包含(Gd,Y)AG:Ce荧光粉、可在紫外光下固化的浆料, 并通过光固化成型、空气排脂、无压烧结, 制备了一种(Gd,Y)AG:Ce荧光粉-石英玻璃复合材料。该荧光玻璃陶瓷在蓝光激发下发射峰值位于575 nm的宽带橙黄光, 且内量子效率大于90%。研究结果表明, 在致密化烧结过程中, (Gd,Y)AG:Ce荧光粉与石英玻璃之间的界面反应非常微弱, 因此荧光粉能够完好地嵌入到石英玻璃中。该全无机荧光转换体可以用于封装相关色温小于4500 K、显色指数大于75和流明效率为74 lm·W-1的高功率暖白光LED。所构建的激光照明器件的饱和激光功率密度可达2.84 W·mm-2, 此时光通量为180 lm。此外, 所提出的制备方法与3D打印兼容, 可以批量化制造出具有复杂立体结构的荧光转换体。该技术有望推动高功率白光LED朝着个性化和模块化发展。
构建多孔碳化硅纳米线(SiCNWs)网络并控制化学气相渗透(CVI)过程,可设计并获得轻质、高强度和低导热率SiC复合材料。首先将SiCNWs和聚乙烯醇(PVA)混合,制备具有最佳体积分数(15.6%)和均匀孔隙结构的SiCNWs网络;通过控制CVI参数获得具有小而均匀孔隙结构的SiCNWs增强多孔SiC(SiCNWs/SiC)陶瓷基复合材料。SiC基体形貌受沉积参数(如温度和反应气体浓度)的影响,从球状颗粒向六棱锥颗粒形状转变。SiCNWs/SiC陶瓷基复合材料的孔隙率为38.9%时,强度达到(194.3±21.3) MPa,导热系数为(1.9 ± 0.1) W/(m∙K),显示出增韧效果,并具有低导热系数。