反应烧结法制备 $Na-\beta''-Al_2O_3$

陈昆刚 徐孝和 林祖鑲 (中国科学院上海硅酸盐研究所 上海 200050)

鞷

研究了 Na-β"-Al₂O₃ 陶瓷管制备的反应烧结法, 即在 900°C 分解初始组成, 而后快速 反应烧结和分阶段退火转相的工艺. 制备的 β'' -Al₂O₃ 管具有良好的性能, 双重显微结构 也在一定程度上得到控制.

关 键 词 $Na-\beta''-Al_2O_3$ 陶瓷, 反应烧结, 显微结构

1 引言

β"-Al₂O₃ 陶瓷固体电解质是高能蓄电池钠硫电池中的关键材料。陶瓷性能的优劣主要 取决于制备工艺. β'' -Al₂O₃ 陶瓷的制备方法有过不少的研究 [1~3], 制备工艺都比较复杂. 本文研究了一种比较简单的、制备 β'' -Al₂O₃ 陶瓷的反应烧结法及工艺参数对 β'' -Al₂O₃ 陶 瓷性能的影响.

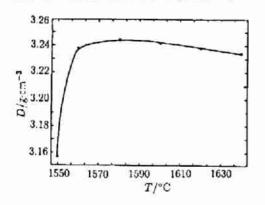
2 实验

采用由硫酸铝铵分解、煅烧得到的 Al₂O₃(纯度为 99.96wt%) 和分析纯的草酸钠和草酸 锂作原料,配料组成: Na₂O 含量为 (9.3~10)wt% 、Li₂O 为 (0.7~0.75)wt%, 其余为 Al₂O₃. 配料在球磨筒中以无水酒精作介质球磨, 混合均匀. 烘干后在 900°C 分解. 然后以 300MPa 的压力等静压成型为 φ 20mm 的圆片和外径 13~14mm 、长 180 和 50mm 、壁厚 1.8~2.1mm 的长短管子,在竖式硅钼棒区域烧成炉中快速烧成.

用光学显微镜观察样品的显微结构,用 X 射线衍射确定相组成及 β'' 相相对于 β'' 和 β 两相总和的百分含量. β'' -Al₂O₃ 管子的电阻率用 V-A 法测定 [4].

3 实验结果和讨论

3.1 Al₂O₃ 粉料的煅烧条件对烧结性能的影响


直接用硫酸铝铵在 950° C 低温分解的 γ -Al₂O₃ 初始粉料配料, 制备 β'' -Al₂O₃ 陶瓷, 陶瓷 晶粒过分生长, 烧结密度低 [5]. Al₂O₃ 不同煅烧温度的研究表明, 初始粉料在 1200~1300°C 保温 2h 煅烧后, α -Al₂O₃ 含量达 88%~94%, 比表面为 3.4~7.3 m^2/g , 用它制备的 β'' -Al₂O₃ 陶 瓷, 烧结密度可达理论密度的 99% 以上.

3.2 烧成条件对烧结性能的影响

用反应烧结法制备 β'' -Al₂O₃ 陶瓷, 其素坯是由未经合成 β'' 相的 β'' -Al₂O₃ 前驱粉料压 成的,在烧成过程中, β'' -Al₂O₃ 相的生成、晶粒生长和致密化等同时发生并相互影响。采 用快速升温烧成,能得到致密、细晶、结构均匀的 β "-Al₂O₃陶瓷. 烧成温度和保温时间对

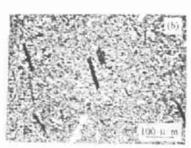
^{* 1996}年6月24日收到初稿, 8月22日收到修改稿

 β "-Al₂O₃ 烧结密度的影响如图 1、2 所示. 烧成温度过高、保温时间过长会出现孤立大晶,不利于显微结构均匀性的控制. 在 1560~1580°C 保温 3~7min 烧成的 β "-Al₂O₃ 陶瓷密度高、晶粒细,显微结构也均匀 (见图 3a).

图 1 烧成温度对体积密度的影响

Fig.1 Influence of sintering temperature on the density of β'' -Al₂O₃ ceramics (holding time: 10min)


图 2 烧成保温时间对密度的影响


Fig.2 Influence of holding time of sintering on the density of β"-Al₂O₅ ceramics (sintering temperature: 1580°C)

3.3 退火条件对电性能的影响

 β "-Al₂O₃ 陶瓷的 Na 离子电导率主要取决于 β " 相的含量。在快速烧成过程中,虽已完成致密化过程,但相转化尚不完全,所生成的 β " 也仅为 β " 和 β 相总含量的 72% 左右。因此要经过退火转相处理后才能得到导电性能好的陶瓷。

用传统的退火工艺,即使在 1500° C 保温 6h 也未能使之完全转相,而在 1500° C 保温 1.5h, 个别晶粒已过份生长,双重显微结构十分明显 (见图 3b). 采用分阶段保温的退火方法如 1430° C×0.5h, 1450° C×1h, 1470° C×0.5h, 1500° C×0.5h, 1520° C×0.5h, 退火, 退火保温时间共 3h 到 6h, 可使其 β'' 相的相对含量达 95% 以上,且显微结构也比较均匀 (见图 3c), 在 300° C 的电阻率为 $5\sim6\Omega$ -cm.

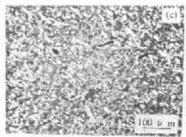


图 3 β"-Al₂O₃ 陶瓷偏光镜照片

Fig.3 Microphotographs under polarized light of β"-Al₂O₃ ceramics
(a) Sintered at 1580°C 5min; (b) Annealed at 1500°C 1.5h; (c) After 6h stepped annealing
(The last step: 1520°C 0.5h)

4 β"-Al₂O₃ 陶瓷的性能

用上述方法制备的 β''-Al₂O₃ 陶瓷的性能列于表 1. 由表 1 可见,用反应烧结法可以制备

出致密度高、导电性能好的 β'' -Al₂O₃ 瓷管. 存在问题是,虽然用分阶段保温法退火转相,可以在一定程度上控制晶粒生长,但从更高的标准要求,显微结构尚需进一步均匀化,这方面有待进一步的研究.

表 1 β"-Al₂O₃ 陶瓷性能 Table 1 Properties of β"-Al₂O₃ ceramics

Size of tubes/mm	Outer diameter: 11~12		
	Wall thickness: 1.5~1.8		
	Longitude: 150		
Chemical composition/wt%	Na ₂ O: 9.19~9.28		
	Li ₂ O: 0.70~0.72		
Relative content of β'' phase/%	95~97		
Density/g·cm ⁻³	>3.23		
Microstructure	Duplex microstructure; Matrix grains: 1~5μm;		
	Great grains: several tens μ m		
Bending strength/MPa	230±15		
Resistivity/ Ω ·cm(300°C)	5~6		
Sodium ion transference life/A·h·em ⁻²	2400		

为了了解 β'' -Al₂O₃ 陶瓷的高温导电性能,测定了 β'' -Al₂O₃ 从室温至 1195°C 的电导率.图 4 为 β'' -Al₂O₃ 陶瓷 $\ln(\rho/T)$ 与 1000/T 的关系曲线.图中的数值系用 $3\times2.5\times25$ mm 的 β'' -Al₂O₃ 试条,在其两端 面涂上铂金作电极,用 V-A 法测定的. β'' -Al₂O₃ 陶瓷从 $13\sim1195$ °C 的电导率列于表 2.

由图 4 可见, β'' -Al₂O₃ 的电阻率随温度升高很快下降,但至 600°C 以上时,下降趋于平缓. 从表 2 可见, β'' -Al₂O₃ 的电导率在室温时为 1×10^{-3} S·cm⁻¹,至 600°C 时已达到 5×10^{-1} S·cm⁻¹,升高了两个数量级,但从 $600\sim1200$ °C,电导率只从 5.21×10^{-1} S·cm⁻¹升高到 5.54×10^{-1} S·cm⁻¹.

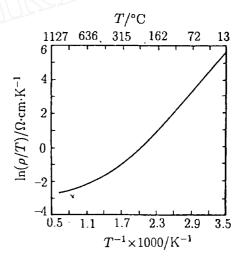


图 4 β "-Al₂O₃ 陶瓷电阻率与温度的关系 Fig.4 Temperature dependent resistivity of β "-Al₂O₃ ceramics

表 2 在不同温度下 β'' -Al₂O₃ 陶瓷的电导率 Table 2 Electrical conductivity of β'' -Al₂O₃ ceramics at different temperature

T/°C	13	19	45	81	107	146
$\sigma/\mathrm{S}{\cdot}\mathrm{cm}^{-1}$	9.17×10^{-4}	1.03×10^{-3}	3.16×10^{-3}	8.75×10^{-2}	2.25×10^{-2}	4.67×10^{-2}
$T/^{\circ}\mathrm{C}$	211	246	295	367	400	508
$\sigma/\mathrm{S}\cdot\mathrm{cm}^{-1}$	1.13×10^{-1}	1.77×10^{-1}	2.63×10^{-1}	3.40×10^{-1}	4.05×10^{-1}	4.86×10^{-1}
$T/^{\circ}\mathrm{C}$	607	728	828	928	1028	1195
$\sigma/\mathrm{S}\cdot\mathrm{cm}^{-1}$	5.21×10 ⁻¹	5.48×10^{-1}	5.53×10^{-1}	5.52×10^{-1}	5.52×10^{-1}	5.45×10 ⁻¹

5 结论

- 1. 用草酸盐分解的粉料反应烧结,而后分阶段退火转相,可制备出性能良好的 $Na-\beta''$ - Al_2O_3 陶瓷管,制备工艺比较简单.
 - 2. 用分阶段保温的退火方法可在一定程度上控制孤立大晶粒的生成.

参考 文献

- 1 Virkar A V, Tennenhous G J, Gordon R S. J. Am. Ceram. Soc., 1974, 57 (11): 508.
- 2 Youngblood G E, Virkar A V, Cannon W R, et al. Ceram. Soc. Bull., 1977, 56 (2): 206.
- 3 Chen Kungang, Tian Shunbao, Lin Zuxiang. In: Ceramic Powders, ed. by Vincenzini P. 1983, 587.
- 4 李香庭, 余柏钦. 物理, 1980, 9 (1): 1.
- 5 陈昆刚, 林祖鑲, 徐孝和等. 无机材料学报, 1997, 12 (3): 327.

Preparation of Na-\(\beta''\)-Al₂O₃ Ceramics by Reaction Sintering Method

CHEN Kungang XU Xiaohe LIN Zuxiang
(Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 China)

Abstract

The fabrication technology of Na- β'' -Al₂O₃ ceramic tubes by reaction sintering, i.e., by decomposition of the starting materials at 900°C followed by reaction sintering and stepped annealing for phase transformation, was investigated. The Na- β'' -Al₂O₃ tubes thus prepared have fine properties and the duplex microstructure can also be controlled in a certain degree.

Key words Na-β"-Al₂O₃ ceramics, reaction sintering, microstructure