文章编号: 1000-324X(2009)01-0061-04

甲醇介质中溶剂热合成六方 CdS 中空纳米球

郑林林1,冯守爱2,3,高峰1,朱珍平2

(1. 太原理工大学 材料科学与工程学院,太原 030024; 2. 中国科学院 山西煤炭化学研究所 煤转化国家重点实验室,太原 030001; 3. 中国科学院 研究生院,北京 100049)

摘要:以甲醇为溶剂,硝酸镉和硫脲为原料,通过溶剂热法合成了 CdS 中空纳米球,采用 TEM、EDS 和 XRD 对样品形 貌和结构进行了表征. TEM 与 EDS 分析显示产物主要为洋葱状 CdS 中空纳米球,外径为 5~17nm,空腔直径为 3~14nm. XRD 分析结果表明,CdS 中空纳米球为六方纤锌矿结构. 并初步考察了醇类溶剂对形成 CdS 纳米结构的影响.结果表明,当以无水乙醇或正戊醇为溶剂时,产物分别为 CdS 颗粒团簇或 CdS 纳米颗粒组装的微球,说明甲醇对中空结构的形成起了重要作用. 以甲醇作溶剂时,中空纳米球的形成可能是 CdS 纳米片层高压下卷曲形成的.

关 键 词: 硫化镉; 中空纳米球; 甲醇; 溶剂热合成

中图分类号: 0614

文献标识码: A

Methanol-mediated Solvothermal Synthesis of Hexagonal CdS Hollow Nanospheres

ZHENG Lin-Lin¹, FENG Shou-Ai^{2,3}, GAO Feng¹, ZHU Zhen-Ping²

(1. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; 2. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; 3. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China)

Abstract: CdS hollow nanospheres were synthesized via solvothermal route from cadmium nitrate and thiourea with methanol as medium. Morphology and structures of the as-obtained products were characterized by TEM, EDS and XRD. TEM and EDS analysis show that the products are mainly onion-like CdS hollow nanospheres, with external diameter of 5 – 17 nm and hollow inner size of 3 – 14 nm. XRD tests indicate that these hollow nanospheres exhibit hexagonal wurtzite structure. The function of alcohol solvent on the growth of CdS nanostructure is also studied preliminary. As absolute ethanol or 1-pentanol is employed as a substitute for solvent, the products are congeries of CdS nanoparticles and microspheres assembled by CdS nanoparticles, respectively. The results demonstrate that methanol plays a significant role in the formation of hollow structure. The formation of hollow nanospheres may be caused by curling of CdS nanoflakes under the high vapor pressure of methanol.

Key words: CdS; hollow nanosphere; mathanol; solvothermal synthesis

CdS 是 II - VI 半导体中一种重要的材料,在常温下的禁带宽度为2.42 eV,具有优良的光学、电学和热学性能,在非线性光学器件、发光二极管、激光器、太阳能电池和薄膜传感器等领域有广泛的应用前景^[13].中空结构的 CdS 具有密度低、比表面积大、表面活性高和表面渗透性好等特点,是 CdS 材料合成领域的一个重要研究方向.当前,大多通过模板法(以液晶^[4]、微乳液^[5,6]、聚苯乙烯-丙烯酸乳胶粒^[7,8]、P123^[9]等作模板)或用微波辐射^[10]及超声^[11]辅助湿化学合成 CdS 的中空球,直径分布在0.1~2.5 μm.

纳米 CdS 材料的表面效应可引起 CdS 微粒表面原子输运和构型的变化;具有的量子尺寸效应可使能隙变宽,吸收和发射光谱蓝移,将显著调节其光学、电学性质^[12]. 因此,CdS 中空纳米球更适合作催化剂、传感器件和纳米光电材料. Dai 等^[13]用聚乙二醇的水溶液制备出平均直径为 25nm,壳层厚度为 5nm 的立方相 CdS 中空纳米球. Duan 等^[14]通过支撑液膜体系制得了平均直径为 40nm,壁厚为 5nm 的立方相 CdS 中空纳米球. 相较于立方相的 CdS,六方相的 CdS 具有更大的光电导率^[15]. 本工作利用溶剂热法,在未使用

收稿日期: 2008-03-11,收到修改稿日期: 2008-05-06

作者简介: 郑林林(1982-),女,硕士研究生. E-mail: zhenglinlin_@163.com 通讯联系人: 高 峰,副教授. E-mail: sxgaof@163.com

模板和超声或微波辐射的情况下,一步合成了 CdS 中 空纳米球. 分析表明该产物为六方晶型,外径分布在 5~17nm, 壁厚约 2.5nm.

实验部分

1.1 试剂与仪器

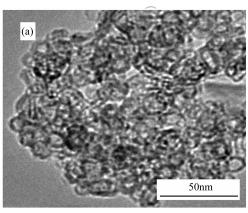
硫脲、四水硝酸镉、甲醇等药品均为分析纯国产 化学试剂. 试验用水为蒸馏水.

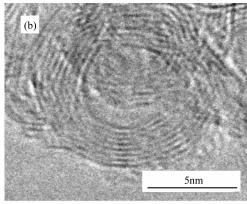
采用日本 JEOL 公司的 JEM-2010 型透射电镜 (TEM) 对样品形貌进行分析,加速电压为 200kV;采 用 TEM 上附带的能量色散谱 (EDS)分析样品元素组 成:采用德国 D8 ADVANCE BRUKER 型 X 射线粉末 衍射仪对样品进行结构测试, Cu 靶 $K\alpha$ 辐射 (λ = 0.15406nm),工作电流 30mA,电压为 40kV,扫描速 度 $0.03^{\circ}/s$,步长 0.02° ,扫描范围 $2\theta = 15^{\circ} \sim 80^{\circ}$.

1.2 实验方法

将0.461g(NH₂)₂CS(6mmol)和0.935g Cd(NO₃)₂ · 4H₂O(3mmol)溶解于60mL 甲醇中,注入容积为100mL 的高压釜中,密封,机械搅拌10min. 随后,将反应液加热 到 140℃, 恒温 60h. 经自然冷却至室温后, 用蒸馏水和无 水乙醇多次洗涤黄色沉淀至滤液显中性,最后于60℃真 空烘干,即得最终产物.

此外,为考察溶剂在产物形成过程中的作用,以无 水乙醇和正戊醇替代甲醇作反应介质进行了比较试验.


结果与讨论


2.1 产物的形貌与结构

以甲醇作溶剂,硝酸镉和硫脲为原料,采用溶剂 热法制得样品的 TEM 照片见图 1. 从图 1(a) 中可以 观察到大量的球形颗粒,其边缘和中心处可见的衬度 差异表明产物具有中空结构. 空心球外径为5~ 17nm,空腔直径为3~14nm. 由 TEM 统计结果估算 出 CdS 中空纳米球的产率约为 85%. 此外还得到少 量的椭球状中空球. 众所周知,由于大的比表面和表 面悬键的存在,小尺寸纳米颗粒表面的吉布斯自由能 通常比较大[11]. 因此,这些中空纳米球趋向于聚集, 使表面的吉布斯自由能降低达到稳定状态. 图 1(b) 是典型的单个纳米中空球的高分辨电镜(HRTEM)照 片,显示纳米球呈洋葱状,其球壁具有连续的层状结 构. 图中显示的纳米球外径为 12nm, 内径为5.6nm, 有8层球壁,层间距(即晶格间距)为0.338nm. 目前 文献报道的具有中空结构的 CdS 微米球及纳米球基 本都是由颗粒组装而成,其球壁有明显的颗粒组装痕 迹^[11, 13, 14, 16]. 而本实验中的 CdS 中空纳米球很明显 不是由颗粒组装而成,其球壁显示的清晰的层状结构 揭示了该纳米球可能是片层结构卷曲而成.

2.2 EDS 分析

为了确定合成的中空纳米球的元素组成,对其进 行了 EDS 分析(图2). 图中 Cd 和 S 的吸收峰强度 很大,说明 Cd 和 S 是样品中的主要元素. 两者的原 子比为1.06:1.00,说明所合成的中空纳米球为 CdS 纳米结构. Cu 的吸收来自检测样品用的铜网,C 的吸 收源于铜网上的碳膜,O的出现可能是由于水和空气

用甲醇作溶剂时所得样品的 TEM 照片

Fig. 1 TEM images of the samples prepared in methanol solvent

(b) A typical single hollow nanosphere

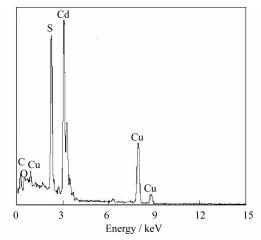


图 2 CdS 中空纳米球的 EDS 分析

Fig. 2 EDS analysis of CdS hollow nanospheres

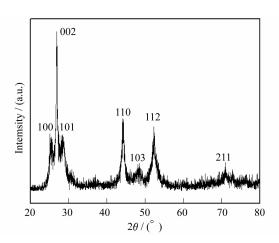


图 3 CdS 中空纳米球的 XRD 图谱 Fig. 3 XRD pattern of CdS hollow nanospheres

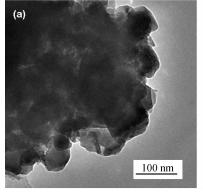
在样品上的物理吸附.

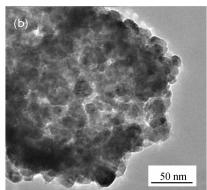
2.3 晶型分析

图 3 是样品的 XRD 图谱,经与 JCPDS 卡片对照,发现其与六方晶型 α -CdS (JCPDS No. 41-1049) 很好地吻合. 在 2θ = 26.9°处呈现尖锐的纤锌矿 (002) 晶面的特征,其两侧各出现一个肩峰对应 (100) 和 (101) 晶面,在 2θ = 44.3°和52.3°处的衍射峰分别对应六方晶型 α -CdS 的 (110) 和 (112) 晶面,其晶胞参数为 α = 4.141 Å, α = 6.720 Å. 图中无杂质衍射峰出现,表明样品为纯的六方相 CdS. 由图 1 (b) 可知,颗粒的晶格间距为0.338 nm,对应六方纤锌矿 CdS 的 (002) 面的晶格间距,表明样品沿 (002) 面优先生长,由 Bragg 公式计算衍射强度最大的 (002) 面的层间距为0.340 nm,与图 1 (b) 观察到的结果一致.

2.4 溶剂种类对产物形貌的影响

传统制备 CdS 中空球大多采用模板法,首先在模板表面进行离子交换反应或反应后吸附在模板表面,然后晶体成核并生长为许多纳米颗粒,颗粒通过范德华力在表面聚集组装,最后再用溶剂溶解^[4,7,8,14]或蒸


发^[5, 16]等方式去除模板,便形成了具有中空结构的球体. 本实验并未使用模板,因此所合成出的 CdS 中空结构应该是依靠溶剂的作用使纳米片层卷曲而成的.


在溶剂热合成中,溶剂起传递压力、媒介和矿化 剂的作用,反应过程中可以控制晶体的生长. 为了解 溶剂对合成样品形貌的影响,实验在同等条件下,用 同体积的无水乙醇和正戊醇分别取代甲醇作为反应 介质参与合成. 图 4(a)是以无水乙醇为溶剂时产物 的 TEM 照片, 很明显该产物的形貌与甲醇作溶剂时 所得产物差异显著,无中空纳米球出现,而是生成了 大量的 CdS 颗粒聚集体,颗粒尺寸为 40~100nm. 图 4(b)是用正戊醇作溶剂所得产物的 TEM 照片,显示 了产物为大量球形的纳米颗粒聚集体,直径分布为 0.1~0.3μm,颗粒直径为10~30nm. 与以无水乙醇 作介质所得产物不同,组装的纳米颗粒间存在较大的 空隙. 图 4(c) 是该聚集体中纳米颗粒的 HRTEM 照 片,从图中可以观察到清晰的晶格条纹,说明以正戊 醇作溶剂所得纳米颗粒的结晶性良好. 通过测量,可 以得出其晶面间距为0.324 nm,对应六方相 CdS (101)面的晶格间距.

溶剂的结构和物理化学性质决定了 CdS 纳米晶粒成核生长过程的动力学,从而影响晶粒的形貌和尺寸.本实验中,不同的醇类溶剂得到不同形貌的产物,说明产物的形貌对溶剂非常敏感,甲醇对纳米 CdS 中空结构的形成有重要贡献.目前的实验还不能体现不同的醇类溶剂对于产物形貌的影响细节,有待于进一步研究.

2.5 CdS 中空纳米球的形成机理初探

Dai^[13]和 Duan^[14]等合成的 CdS 中空纳米球外壳为多晶结构,由立方相 CdS 纳米颗粒之间的相互作用组装而成. 而本实验中 CdS 中空纳米球外壳具有连续的片层结构,不是由纳米颗粒组装而成,因而具有不同的形成机理.

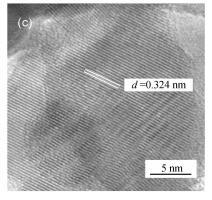


图 4 不同溶剂中所得样品的 TEM 照片

Fig. 4 TEM images of the samples prepared in different solvents
(a) Absolute ethanol; (b) and (c) 1-pentanol

Kale 等[17] 采用溶剂热法,用甲醇做溶剂,以 $Cd(NO_3)_2 \cdot 4H_2O$, $In(NO_3)_3 \cdot 3H_2O$ 和 $(NH_2)_2CS$ 为原料,在高压釜内反应合成了 CdIn₂S4 纳米管. 他 们认为甲醇汽化引起的片层卷曲对合成 CdIn,S, 纳米 管起到了至关重要的作用. 考虑到与该实验条件相 似,我们推测 CdS 中空纳米球的形成过程如下:在常 温下 $(NH_2)_2CS$ 释放 S^2 的能力弱 S^2 离子浓度很 低. 随着反应液的温度逐渐升高,(NH,),CS逐渐水 解释放出较多的 S^{2-} , S^{2-} 与 Cd^{2+} 结合形成 CdS 的小 晶核. 继续加热时, CdS 晶核辐射发育长大形成纳米 片层,这些小尺寸的纳米片层具有较高的表面能,高 温、高压下片层的曲率进一步增大,容易发生片层卷 曲形成 CdS 中空纳米球. 在相同反应温度下,用甲醇 作溶剂时,釜内的压力高达 10MPa,而用同体积的无 水乙醇和正戊醇作溶剂时,压力分别为5.6和 1.3MPa. 在合成过程中,使用甲醇作反应介质所产生 的高压环境下,形成的纳米片曲率较大,高曲率的片 层卷曲进而形成 CdS 中空纳米结构. 使用乙醇和正 戊醇作反应介质时,釜内形成的压力较甲醇汽化产生 的压力低许多,形成的纳米片层曲率较低,不易卷曲 形成中空纳米结构而得到纳米晶粒.

结论

以甲醇为反应介质,采用溶剂热法合成了洋葱状 六方结构的 CdS 中空纳米球,其内外径分别为 3~14 和 5~17nm. CdS 中空纳米球的合成过程中没有使用 模板,实验结果表明:甲醇溶剂对于 CdS 纳米球空腔结 构的形成起到了重要作用. 在甲醇汽化形成的高压环 境中,CdS 纳米片层发生卷曲形成中空结构. 该方法工 艺简单,可拓展用于合成其它无机中空纳米球.

参考文献:

- [1] Baron R, Huang C H, Bassani D M, et al. Angew. Chem. Int. Ed., 2005, 44 (26): 4010-4015.
- [2] Katz E, Zayats M, Willner I, et al. Chem. Commun., 2006, **(13)**: 1395-1397.
- [3] Yao W T, Yu S H, Liu S J, et al. J. Phys. Chem. B., 2006, 110 (**24**): 11704-11710.
- [4] Braun P V, Stupp S I. Mater. Res. Bull., 1999, 34 (3): 463-469.
- [5] Zhu L, Zheng X, Liu X, et al. J. Colloid. Interf. Sci., 2004, 273 **(1)**: 155-159.
- [6] Xu S, Peng Q. Chin. J. Chem., 2005, 23 (9): 1135-1138.
- [7] Song C X, Gu G H, Lin Y S, et al. Mater. Res. Bull., 2003, 38 **(5**):917-924.
- [8] Fu X, Lin L, Wang D B, et al. Colloid Surf. A-Physicochem. Eng. Asp., 2005, 262 (1-3): 216-219.
- [9] Ma Y R, Qi L M, Ma J M, et al. Langmuir, 2003, 19 (21): 9079-9085.
- [10] Shao M.W., Li Q., Kong L.F., et al. J. Phys. Chem. Solids., 2003, **64** (**7**): 1147-1150.
- [11] Xu S, Wang H, Zhu J J, et al. Eur. J. Inorg. Chem., 2004, **(23)**: 4653-4659.
- [12] 张立德, 牟季美. 纳米材料和纳米结构,第一版. 北京: 科学出 版社, 2001: 59-63.
- [13] Dai Z H, Zhang J, Bao J C, et al. J. Mater. Chem., 2007, 17 **(11)**: 1087-1093.
- [14] Duan S, Wu Q, Jia R, et al. J. Nanopart. Res., 2007, 10 (3): 525-529.
- [15] 李华维, 羊 亿, 黄岳文,等. 太阳能学报, 2007, 28 (5): 508-
- [16] Huang J X, Xie Y, Li B, et al. Adv. Mater., 2000, 12 (11): 808-811.
- [17] Kale B B, Baeg J O, Lee S M, et al. Adv. Funct. Mater., 2006, **16** (**10**): 1349-1354.